Applying Congruent Triangles - Bisectors, Medians and Altitudes

Median: a segment in a triangle that connects a vertex to the midpoint of the opposite side.

Altitude: a segment in a triangle that connects a vertex to the side opposite forming a perpendicular.

Angle Bisector: a segment that bisects an angle in a triangle and connects a vertex to the opposite side.

Perpendicular Bisector: a segment in a triangle that passes through the midpoint of a side and is perpendicular to that side.

Theorem 5-1.2: A point is on the perpendicular bisector IFF it is equidistant from the endpoints of the segment.

Draw and label a figure to illustrate each situation.
\#1) $\overline{P T}$ and $\overline{R S}$ are medians of triangle $\triangle \mathrm{PQR}$ and intersect at V.

\#2) $\overline{A D}$ is a median and an altitude of $\triangle A B C$.

\#3) $\triangle \mathrm{DEF}$ is a right triangle with right angle at $\mathrm{F} . \overline{F G}$ is a median of $\triangle \mathrm{DEF}$ and $\overline{G H}$ is the perpendicular bisector of $\overline{D E}$.

State whether each sentence is always, sometimes, or never true.
\#4) Three medians of a triangle intersect at a point inside the triangle.

\#5) The three angle bisectors of a triangle intersect at a point outside the triangle.

\#6) The three altitudes of a triangle intersect at a vertex of the triangle.

Sometimes

Applying Congruent Triangles - Bisectors, Medians and Altitudes

(1)
(2)

B

$$
\begin{array}{rlrl}
4 x-6 & =90 & B D & =2 x-15 \\
4 x & =96 & & =2(24)-15 \\
x & =24 & & =48-15 \\
B D & =33
\end{array}
$$

\#8) $\overline{A D}$ is a median of $\triangle A B C$. Find $m \angle A D C$

$$
\begin{aligned}
(1) B D & =D C \\
2 x-15 & =x+7 \\
x-15 & =7 \\
x & =22
\end{aligned}
$$

(2)

$$
m \angle A D C=4 x-6 B
$$

$$
=4(22)-6
$$

$$
=88-6
$$

$$
m \angle A D C=82
$$

\#9) Find the midpoint of $A(2,4)$ and $B(-5,8)$

$$
\begin{aligned}
& M=\left(\frac{\Sigma x}{2}, \frac{\Sigma y}{2}\right) \\
& M=\left(\frac{(2)+(-5)}{2}, \frac{(4)+(8)}{2}\right) \\
& N=\left(\frac{-3}{2}, \frac{12}{2}\right) \\
& N=\left(-\frac{3}{2}, 6\right)
\end{aligned}
$$

\#10) Find $\mathrm{m} \angle \mathrm{ABC}$ if $\overline{B D}$ is an angle bisector of $\triangle A B C$.

(1)

$$
\begin{gathered}
m \angle A B D+m \angle D B C=m \angle A B C \\
(6 x+3)+(6 x+3)=13 x+4 \\
12 x+6=13 x+4 \\
6=x+4
\end{gathered}
$$

$$
m \angle A B C=13 x+4
$$

$$
=13(2)+4
$$

$$
=26+4
$$

$$
m \angle A B C=30^{\circ}
$$

\#11 $\widehat{A D}$ is a perpendicular bisector of $\overline{B C}$. Find \boldsymbol{X} and \boldsymbol{Y}.

(1)

$$
\begin{aligned}
C D & =D B \\
3 x+7 & =x+15 \\
2 x+7 & =15 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

$$
(2)
$$

B
$2 y-30=90$ $2 y=120$ $y=60$

