## Geometry

Midterm Exam Review
Name

1. Reflect FOXY across line $y=x$.

2. Parallelogram $S H A Q$ is shown. Point $E$ is the midpoint of segment $S H$. Point $F$ is the midpoint of segment $A Q$


Which transformation carries the parallelogram onto itself?
A) A reflection across line segment SA
B) A reflection across line segment EF
C) A rotation of 180 degrees clockwise about the origin
D) A rotation of 180 degrees clockwise about the center of the parallelogram.
3. Square BERT is transformed to create the image $B^{\prime} E^{\prime} R^{\prime} T^{\prime}$, as shown.


Select all of the transformations that could have been performed.
A) A reflection across the line $y=x$
B) A reflection across the line $y=-2 x$
C) A rotation of 180 degrees clockwise about the origin
D) A reflection across the x-axis, and then a reflection across the $y$-axis.
E) A rotation of 270 degrees counterclockwise about the origin, and then a reflection across the $x$-axis.
4. Smelly Kid performs a transformation on a triangle. The resulting triangle is similar but not congruent to the original triangle. Which transformation did Smelly Kid perform on the triangle?
A) Dilation
B) Reflection
C) Rotation
D) Translation

## Geometry

Midterm Exam Review
Name
5. Triangle $A B C$ had vertices of $A(1,1), B(2.5,3)$ and $C(0,-3)$. It is dilated by a scale factor of $1 / 2$ about the origin to create triangle $A^{\prime} B^{\prime} C^{\prime}$. What is the length, in units, of side $\overline{B^{\prime} C^{\prime}}$ ?
6. Complete the statement to explain how it can be shown that two circles are similar.
Circle M can be mapped onto circle N by a reflection
across $\qquad$ and a dilation
about the center of circle M by a scale factor of

7. A translation is applied to $\triangle D O G$ to create $\Delta D^{\prime} O^{\prime} G^{\prime}$.


Let the statement $(x, y) \rightarrow(a, b)$ describe the translation. Create equations for $a$ in terms of $x$ and for $b$ in terms of $y$ that could be used to describe the translation.
$a=$ $\qquad$
$b=$ $\qquad$

Geometry
Page 2 of $\mathbf{1 0}$

Name $\qquad$
8. Triangle HEN is shown.


Triangle $H^{\prime} E^{\prime} N^{\prime}$ is created by dilating triangle HEN by a scale factor of 4 . What is the length of $\overline{H^{\prime} E^{\prime}}$ ?
9. A figure is fully contained in Quadrant II. The figure is transformed as shown.

- A reflection over the x-axis
- A reflection over the line $y=x$
- A $90^{\circ}$ counterclockwise rotation about the origin.

In which quadrant does the resulting image lie?
A) Quadrant I
B) Quadrant II
C) Quadrant III
D) Quadrant IV
10. Rhombus PQRS is shown in the coordinate plane. Points M and N are midpoints of their respective sides.


Select all of the transformations that map the rhombus onto itself.
A) A $90^{\circ}$ clockwise rotation around the center of the rhombus
B) A $180^{\circ}$ clockwise rotation around the center of the rhombus
C) A reflection across $\overline{N M}$
D) A reflection across $\overline{Q S}$
11. Triangle $A B C$ is reflected across the line $y=2 x$ to form triangle RST. Select all of the true statements.
A) $\overline{A B}=\overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
B) $\overline{A B}=2 \cdot \overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
C) $\triangle A B C \sim \triangle R S T$
D) $\triangle A B C \cong \triangle R S T$
E) $m \angle B A C=m \angle S R T$
F) $m \angle B A C=2 \cdot m \angle S R T$

## Geometry

Midterm Exam Review
Name
12. Triangle BAL is reflected across the line $y=x$. Draw the resulting triangle.

13. All corresponding sides and angles of $\triangle R S T$ and $\triangle D E F$ are congruent. Select all of the statements that must be true.
A) There is a reflection that maps $\overline{R S}$ to $\overline{D E}$
B) There is a dilation that maps $\triangle R S T$ to $\triangle D E F$
C) There is a translation followed by a rotation that maps $\overline{R T}$ to $\overline{D F}$
D) There is a sequence of transformations that maps $\triangle R S T$ to $\triangle D E F$
E) There is not necessarily a sequence of rigid motions that maps $\triangle R S T$ to $\triangle D E F$
14. The coordinate plane shows $\Delta F G H$ and $\Delta F " G " H "$


Which sequence of transformations can be used to show that $\Delta F G H \sim \Delta F " G " H " ?$
A) A dilation about the origin with a scale factor of 2, followed by a $180^{\circ}$ clockwise rotation about the origin.
B) A dilation about the origin with a scale factor of 2, followed by a reflection over the line $y=x$
C) A translation 5 units up and 4 units left, followed by a dilation with a scale factor of $1 / 2$ about point $\mathrm{F}^{\prime \prime}$
D) A $180^{\circ}$ clockwise rotation about the origin, followed by a dilation with a scale factor of $1 / 2$ about $F^{\prime \prime}$

## Geometry

Midterm Exam Review
Name
15. Two triangles are shown.


Which sequence of transformations could be performed on $\Delta E F G$ to show that it is similar to $\Delta J K L$ ?
A) Rotate $\triangle E F G 90^{\circ}$ clockwise about the origin, and then dilate it by a scale factor of $1 / 2$ with a center of dilation at point $\mathrm{F}^{\prime}$
B) Rotate $\triangle E F G 180^{\circ}$ clockwise about point E , and then dilate it by a scale factor of 2 with a center of dilation at point $E^{\prime}$
C) Translate $\triangle E F G 1$ unit up, then reflect it across the $x$-axis, and then dilate it by a factor of $1 / 2$ with a center of dilation at point $\mathrm{E}^{\prime \prime}$
D) Reflect $\triangle E F G$ across the $x$-axis, then reflect it across the line $y=x$, and then dilate it by a scale factor of 2 with a center of dilation at point $F^{\prime \prime}$
16. A triangle is shown on the coordinate grid. Draw the triangle after a transformation following the rule $(x, y) \rightarrow(x-4, y+3)$

17. Triangle $A B C$ is dilated with a scale factor of $k$ and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.


What is the scale factor?

## Geometry

Midterm Exam Review
Name
18. A square is rotated about its center. Select all of the angles of rotation that will map the square onto itself.
A) 45 degrees
B) 60 degrees
C) 90 degrees
D) 120 degrees
E) 180 degrees
F) 270 degrees
19. Circle $J$ is located in the first quadrant with center ( $\mathrm{a}, \mathrm{b}$ ) and radius s . Felipe transforms Circle J to prove that it is similar to any circle centered at the origin with radius $t$. Which sequence of transformations did Felipe use?
A) Translate Circle J by $(x+a, y+b)$ and dilate by a factor of $\frac{t}{s}$
B) Translate Circle J by $(x+a, y+b)$ and dilate by a factor of $\frac{s}{t}$
C) Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{t}{s}$
D) Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{s}{t}$
20. $\qquad$ Kyle performs a transformation on a triangle. The resulting is similar but not congruent to the original triangle. Which transformation did Kyle use?
A) Dilation
B) Reflection
C) Rotation
D) Translation
21. A study reports that in 2010 the population of the United States was $308,745,538$ people and the land area was approximately $3,531,905$ square miles.

Based on the study, what was the population density, in people per square mile, of the United States in 2010? Round your answer to the nearest tenth.
22. Lainie wants to calculate the height of the sculpture. She places a mirror on the ground so that when she looks into the mirror she sees the top of the sculpture, as shown.


What is the height, in feet, of the sculpture?

## Geometry

Midterm Exam Review $\qquad$
23. Triangle $A B C$ is dilated with a scale factor of $k$ and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.


What is the scale factor?
24. A 9-foot ladder and a 4-foot ladder are leaning against a house. The two ladders create angles of the same measure with the ground. The 4 -foot ladder has a height of 3.8 feet against the house.


What is the height, in feet, of the 9-foot ladder against the house?
25. Triangle XYZ is shown.


Which triangle must be similar to $\triangle X Y Z$ ?
A) A triangle with two angles that measure 40 degrees.
B) A triangle with angles that measure 40 and 60 degrees
C) A scalene triangle with only one angle that measures 100 degrees
D) An isosceles triangle with only one angle that measures 40 degrees
26. $\overline{A B}$ has endpoints $\mathrm{A}(-1.5,0)$ and $\mathrm{B}(4.5,8)$. Point C is on line $\overline{A B}$ and is located at $(0,2)$. What the ratio of $\frac{A C}{C B}$ ? Round to 2 decimal places.
27. $\overline{A C}$ has endpoints $\mathrm{A}(-1,-3.5)$ and $\mathrm{C}(5,-1)$. Point B is on $\overline{A C}$ and is located at $(0.2,-3)$. What is the ratio of $\frac{A B}{B C}$ ?

## Geometry

## Midterm Exam Review

28. Two pairs of parallel lines intersect to form a parallelogram as shown.


Place statements and reasons in the table to complete the proof that the opposite angles in a parallelogram are congruent.

| Statement | Reason |
| :--- | :--- |
| $1 . m \\| n$ and $k \\| l=$ Given |  |
| 2. | 2. |
| 3. | 3. |
| 4. | 4. |

A. $\angle 1 \cong \angle 2$
B. $\angle 1 \cong \angle 3$
C. $\angle 2 \cong \angle 3$
D. Alternate exterior angles theorem
E. Alternate interior angles theorem
F. Transitive property of congruence
G. Opposite angles are congruent
H. Corresponding angles postulate
29. James correctly proves the similarity of triangles DAC and DBA as shown.


His incomplete proof is shown.

| Statement | Reason |
| :--- | :--- |
| 1. $m \angle C A B=m \angle A D B=90^{\circ}$ | 1. Given |
| 2. $\angle A D B$ and $\angle A D C$ are a <br> linear pair | 2. Definition of linear pair |
| 3. $\angle A D B$ and $\angle A D C$ are <br> supplementary | 3. Supplement postulate |
| 4. $m \angle A D B+m \angle A D C=180^{\circ}$ | 4. Definition of supplementary angles |
| 5. $90^{\circ}+m \angle A D C=180^{\circ}$ | 5. Substitution PoE |
| $6 . m \angle A D C=90^{\circ}$ | 6. Subtraction PoE |
| 7. $\angle C A B \cong \angle A D B$ <br> $\angle C A B \cong \angle A D C$ | 7. Definition of congruent angles |
| 8. $\angle A B C \cong \angle D B A$ <br> $\angle D C A \cong \angle A C B$ | 8. Reflexive property of congruent angles |
| 9. $\triangle A B C \sim \triangle D B A$ <br> $\triangle A B C \sim \triangle D A C$ | 9. |
| $10 . \triangle D B A \sim \triangle D A C$ | 10. Substitution PoE |

What is the missing reason for the 9th statement?
A) СРСТС
B) AA postulate
C) All right triangles are similar
D) Transitive property of similarity

## Geometry

Midterm Exam Review $\qquad$
30.
$\triangle P Q R$ is shown, where $\overline{S T} \| \overline{R Q}$


Marta wants to prove that $\frac{S R}{P S}=\frac{T Q}{P T}$.
Place a statement or reason in each blank box to complete Marta's proof.

| Statement | Reason |
| :--- | :--- |
| 1. $\overline{S T} \\| \overline{R Q}$ | 1. Given |
| 2. $\angle P S T \cong \angle R$ <br> $\angle P T S \cong \angle Q$ | 2. Corresponding angles postulate |
| 3. $\Delta P Q R \sim \Delta P T S$ | 3. |
| 4. | 4. |
| 5. $P R=P S+S R$ | 5. Segment addition postulate |
| $P Q=P T+T Q$ | 6. Substitution PoE |
| 6. $\frac{P S+S R}{P S}=\frac{P T+T Q}{P T}$ | 7. Communitive PoE |
| 7. $\frac{P S}{P S}+\frac{S R}{P S}=\frac{P T}{P T}+\frac{T Q}{P T}$ | 8. Subtraction PoE |
| 8. $\frac{S R}{P S}=\frac{T Q}{P T}$ |  |

A. $\frac{P R}{P S}=\frac{P Q}{P T}$
B. $\frac{P S}{S R}=\frac{P T}{S T}$
C. $\angle P \cong \angle P$
D. AA Similarity
E. ASA Similarity
F. SSS Similarity
G. Reflexive Property
H. Segment addition postulate
I. Corresponding sides of similar triangles are proportional
J. Corresponding sides of similar triangles are congruent
K. Alternate interior angles theorem
L. Alternate exterior angles theorem
31. Triangle $A B C$ is shown.


Given: $\triangle A B C$ is isosceles. Point D is the midpoint of $\overline{A C}$.
Prove: $\angle B A C \cong \angle B C A$

| Statement | Reason |
| :--- | :--- |
| 1. $\triangle A B C$ is isosceles. <br> D is the midpoint of $\overline{A C}$ | 1. Given |
| 2. $\overline{A D} \cong \overline{D C}$ | 2. Definition of midpoint |
| $3 . \overline{B A} \cong \overline{B C}$ | 3. Definition of isosceles triangle |
| $4 . \overline{B D}$ exists | 4. A line segment can be drawn between <br> any two points |
| $5 . \overline{B D} \cong \overline{B D}$ | 5. |
| $6 . \triangle A B D \cong \triangle C B D$ | 6. |
| $7 . \angle B A C \cong \angle B C A$ | 7. |

AA congruency postulate SAS congruency postulate SSS congruency postulate CPCTC
Reflexive property
Symmetric property
Midpoint theorem

## Geometry

Midterm Exam Review $\qquad$
32. The proof shows that opposite angles of a parallelogram are congruent.


Given: ABCD is a parallelogram with diagonal $\overline{A C}$
Prove: $\angle B A D \cong \angle D C B$

| Statement | Reason |
| :--- | :--- |
| 1. ABCD is a parallelogram with <br> diagonal $\overline{A C}$ | 1. Given |
| 2. $\overline{A B} \\| \overline{C D}$ and $\overline{A D} \\| \overline{B C}$ | 2. Definition of parallelogram |
| 3. $\angle 2 \cong \angle 3$ <br> $\angle 1 \cong \angle 4$ | 3. Alternate interior angles theorem |
| 4. $m \angle 2=m \angle 3$ <br> $m \angle 1=m \angle 4$ | 4. Definition of congruent angles |
| 5. $m \angle 1+m \angle 2=m \angle 4+m \angle 2$ | 5. Addition property of equality |
| 6. $m \angle 1+m \angle 2=m \angle 4+m \angle 3$ | 6. |
| 7. $m \angle 1+m \angle 2=m \angle B A D$ <br> $m \angle 3+m \angle 4=m \angle D C B$ | 7. Angle addition postulate |
| 8. $m \angle B A D=m \angle D C B$ | 8. Substitution PoE |
| 9. $\angle B A D \cong \angle D C B$ | 9. Definition of congruent angles |

What is the missing reason in this partial proof?
A) ASA
B) Substitution PoE
C) Angle addition postulate
D) Alternate interior angles postulate
33. The graph of line $m$ is shown


What is the equation of the line that is perpendicular to line $m$ and passes through the point $(3,2)$ ?
34. Square $A B C D$ has vertices at $A(1,2)$ and $B(3,-3)$. What is the slope of $\overline{B C}$ ?
35. Kevin asked Olivia what parallel lines are. Olivia responded, "They are lines that never intersect." What important piece of information is missing form Olivia's response?
A. The lines must be straight.
B. The lines must be coplanar.
C. The lines can be noncoplanar.
D. The lines form four right angles.
36. Triangle $A B C$ has vertices at $(-4,0),(-1,6)$ and $(3,-1)$. What is the perimeter of triangle $A B C$, rounded to the nearest tenth?

