Quadrilaterals - Squares and Rhomb

Use rhombus BEAC with $\mathrm{BA}=26$ to determine whether each statement is true or false. Justify your answer.

\#1) $C E=26$
see last pace for justification
\#2) $\mathrm{HA}=13$ True
\#3) $\overline{B A} \perp \overline{E C} \quad$ True
\#4) $\triangle B H E \cong \triangle A H C$ True
\#5) $m \angle B E H=m \angle E B H \quad$ False
\#6) $\angle \mathrm{CBE}$ and $\angle \mathrm{BCA}$ are supplementary True

Circle all the quadrilaterals - parallelogram, rectangle, rhombus, or square - that have each property. \#7) All angles are congruent.
parallelogram, rectangle rhombus, o square
\#8) The opposite sides are parallel.
parallelogram, rectangle, rhombus, or square
\#9) All sides are congruent. parallelogram, rectangle, rhombus, or square
\#10) The opposite sides are congruent.
parallelogram, rectangle, rhombus, or square
\#11) It is equiangular and equilateral. parallelogram, rectangle, rhombus, or square

Use rhombus IJKL and the given information to solve each problem.
\#12) If $\mathrm{m} \angle 3=62$, find $\mathrm{m} \angle 1, \mathrm{~m} \angle 4$, and $\mathrm{m} \angle 6$.

$$
\begin{aligned}
& \mathrm{MLI}+\mathrm{ML} 3+90=180^{\circ} \\
& \mathrm{MLI}+(62)+90=180 \\
& m \angle 1+152=180
\end{aligned}
$$

\[

\]

\#13) If $m \angle 3=2 x+30$ and $m \angle 4=3 x-1$, find x.

$$
\begin{aligned}
m \angle 3 & =m \angle 4 \\
2 x+30 & =3 x-1 \\
30 & =x-1 \\
31 & =x
\end{aligned}
$$

\#14) If $m \angle 3=4(x+1)$ and $m \angle 5=2(x+1)$, find x.

\#15) If $W X Y Z$ is a square, find $m \angle Z X Y$.

$m \angle Z X Y=45^{\circ}$
\#16) $P Q M N$ is a parallelogram. If $P N=7 x-10$ and $P Q=5 x+$ 6 , for what value of x is PQMN a rhombus?

$$
\begin{aligned}
P Q & =P N \text { to be a rhombus } \\
5 x+6 & =7 x-10 \\
6 & =2 x-10 \\
16 & =2 x \\
8 & =x
\end{aligned}
$$

Quadrilaterals - Squares and Rhomb

Homework Section 6.5
\#17) $A B X Y$ is a parallelogram. If $A B=5 x+24$ and $B X=x^{2}$, for what values of x is $A B X Y$ a rhombus?

$$
\begin{gathered}
A B=x B \\
5 x+24=x^{2} \\
0=x^{2}-5 x-24 \\
0=(x-8)(x+3) \\
0=x \cdot 8 \quad \begin{array}{l}
0=x+3 \\
8=x \quad-3=x
\end{array}
\end{gathered}
$$

$$
x=-3,8
$$

Determine whether EFGH is a parallelogram, rectangle, rhombus, or square. List all that apply
\#18) $E(0,1), F(2,0), G(4,4), H(2,5)$

$$
\begin{aligned}
d_{E H} & =\sqrt{[\Delta x]^{2}+[\Delta y]^{2}} \\
& =\sqrt{[(0)-(2)]^{2}+[(1)-(5)]^{2}} \\
& =\sqrt{[-2]^{2}+[-4]^{2}} \\
& =\sqrt{4+16} \\
d_{E H} & =\sqrt{20}
\end{aligned}
$$

$$
d_{E F}=\sqrt{[\Delta x]^{2}+[\Delta y]^{2}}
$$

$$
=\sqrt{[(0)-(2)]^{2}+[(1)-(0)]^{2}}
$$

$$
=\sqrt{[-2]^{2}+[1]^{2}}
$$

$$
=\sqrt{4+1}
$$

$d_{E A}=2 \sqrt{5}$

\#19) $E(2,-3), F(-3,1), G(1,6), H(6,2)$

\therefore Parallelogram, Rhombus, Rector" Square.

[^0]
[^0]: \#1) False, the diagonals of a rhombus are not congruent unless it is a square.
 \#2) True, the diagonals of a parallelogram bisect each other.
 \#3) True, the diagonals of a rhombus are perpendicular.
 \#4) True, since the diagonals of a parallelogram bisect each other, and all four sides of a rhombus are congruent, the triangles are congruent by SSS.
 \#5) False, the consecutive angles of a rhombus are not congruent unless it is also a square.
 \#6) True, the consecutive angles in a parallelogram are supplementary.
 \#7) Rectangle, Square
 \#8) Parallelogram, Rectangle, Rhombus, Square
 \#9) Rhombus, Square
 \#10) Parallelogram, Rectangle, Rhombus, Square
 \#11) Square \#12) $\mathrm{m} \angle 1=28, \mathrm{~m} \angle 4=62, \mathrm{~m} \angle 6=90$
 $\begin{array}{lllll}\text { \#13) } 31 & \text { \#14) } 14 & \text { \#15) } 45 \quad \text { \#16) } 8 & \text { \#17) }-3 \text { and } 8\end{array}$
 \#18) Parallelogram, Rectangle \#19) Parallelogram, Rectangle, Rhombus, Square

