Quadrilaterals - Rectangles

Homework Section 6.4
Name
\#6) If $\mathrm{m} \angle 1=32$, find the $\mathrm{m} \angle 2, \mathrm{~m} \angle 3$, and $\mathrm{m} \angle 4$.
Use rectangle MATH and MNRS with the given information to
solve each problem.

$$
\text { \#1) } \mathrm{HP}=6 \text {, find } \mathrm{HA}
$$

\#2) $\mathrm{MH}=8$, find AT .

$M H=A T$
$8=A T$
\#3) $H P=3 x$ and $P T=18$, find x.

H
A

$$
\begin{aligned}
A P & =P T \\
3 x & =18 \\
x & =6
\end{aligned}
$$

\#4) $m \angle 1=55$, find $m \angle 2$.
M

A
H

$$
\begin{aligned}
m L 1+m L 2+m \angle H M P & =180^{\circ} \\
S S+m \angle 2+m L 2 & =180
\end{aligned}
$$

$$
\begin{aligned}
55+2 m \angle 2 & =180 \\
2 m \angle 2 & =125 \\
m \angle 2 & =\frac{125}{2}
\end{aligned}
$$

$$
\begin{aligned}
H P+P A & =H A \\
6+6 & =H A \\
12 & =H A
\end{aligned}
$$

S
$\begin{aligned} & N \quad m \angle 2=32 \\ & m \angle 2+m \angle 3=90^{\circ} \\ & 32^{\circ}+m \angle 3=90^{\circ} \\ & m \angle 3=58 \\ & m \angle 3=m \angle 4 \\ & 58=m \angle 4\end{aligned}$
\#7) If $S T=14.25$, find $M R$.

\#8) If $\mathrm{m} \angle \mathrm{MTN}=116$, find $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 4$.

Draw a counterexample to show that each statement below is false.
\#9) If a quadrilateral has congruent diagonals, then it is a rectangle.

\#10) If a quadrilateral has opposite sides congruent, then it is a rectangle.

\#11) If a quadrilateral has diagonals that bisect each other, then it is a rectangle.

Geometry Page 1 of 2

Quadrilaterals - Rectangles

Homework Section 6.4
Name
Find the values of x and y in rectangle PQRS.
\#12) $\operatorname{PT}=3 x-y, S T=x+y, T Q=5$

13) $P S=y, Q R=x+7, P Q=y-2 x, S R=x+1$

\#14) $\mathrm{PT}=\mathrm{x}+\mathrm{y}, \mathrm{ST}=2 \mathrm{y}-7, \mathrm{PR}=-3 \mathrm{x}$

Determine whether $A B C D$ is a rectangle. Explain \#15) $\mathrm{A}(12,2), \mathrm{B}(12,8), \mathrm{C}(-3,8), \mathrm{D}(-3,2)$

$m_{C D}=\frac{\Delta y}{\Delta x}=\frac{(8)-(2)}{(-3)-(-3)}=\frac{6}{0}=$ und vertica
$m_{B C}=\frac{\Delta y}{\Delta x}=\frac{(8)-(8)}{(-3)-(12)}=\frac{0}{-15}=0 \quad$ horizonta
$m_{A D}=\frac{\Delta y}{\Delta x}=\frac{(2)-(2)}{(-3)-(12)}=\frac{0}{-15}=0 \quad$ horizontn 1
This is a rectange becanse opposite sodes are perellel and consecative sedes are \perp.
\#16) $A(0,-3), B(4,8), C(7,-4), D(11,7)$

This is not a quadrilteral becanse so it can't be a rectangle.
\#1) 12
\#2) 8
\#3) 6
\#4) 62.5
\#5) 70
\#6) 32, 58, 58
\#7) 28.5
\#8) 32,58
\#9) $\mathrm{CD}=\mathrm{AB}$
\#10)
\#11)

\#12) $(2.5,2.5) \quad \# 13)(3,10) \quad \# 14)(-2,5)$
\#15) Yes, opposite sides are parallel and consecutive sides are paraitel. \perp
\#16) No, opposite sides are not parallel.

