Quadrilaterals - Parallelograms
Homework Section 6.2
Name

EFGH is a parallelogram. Determine whether each statement must be true. If it must be true, then state the theorem or definition that justifies the statement.

\#1) $\quad \overline{F E} / / \overline{G H}$
True, Defin of parallelogram
\#2) $\triangle \mathrm{FDE} \cong \triangle H D G$
True, Vertical Angles Theorem, diogonals of a parallelog bisect each other and SAS Theorem
\#3) $\quad \angle \mathrm{FGH} \cong \angle \mathrm{FEH}$
True, opposite angles in a parallelogram are congruent.
\#4) $\overline{F D} \cong \overline{D G}$
False
\#5) $\quad \triangle \mathrm{FHE} \cong \triangle \mathrm{GHE}$
False
\#6) $D E=\frac{1}{2} E G$
True, the diagonals of a parallelogran bisect each other.

If each quadrilateral is a parallelogram, find the value of x, y, and z.
\#7)

$$
\begin{aligned}
z+80^{\circ} & =180^{\circ} \\
z & =100^{\circ} \\
& \left(80^{\circ}, 80^{\circ}, 100^{\circ}\right)
\end{aligned}
$$

\#8)

$$
x+y+105=180
$$

$$
30+y+105=180
$$

$$
y+135=180
$$

$$
y=45^{\circ}
$$

$$
\left(30^{\circ}, 45^{\circ}, 75^{\circ}\right)
$$

Quadrilaterals - Parallelograms
Homework Section 6.2
Name
\#9)

$$
\begin{aligned}
& z=120^{\circ} \\
& y=35^{\circ}
\end{aligned}
$$

$$
\begin{array}{r}
x+y+z=180 \\
x+35+120=180 \\
x+155=180 \\
x=25
\end{array}
$$

Is each quadrilateral a parallelogram? Justify your answer. \#10)

Yes, both pairs of opposite sides are parulel.
\#11)

Yes, both pairs of opposite sides are parulel.
\#12) Explain why it is impossible for the figure to be a parallelogram.

opposite sides are not congruent.

Quadrilaterals - Parallelograms

Homework Section 6.2
\#13) Given parallelogram PQRS with $\mathrm{m} \angle \mathrm{P}=\mathrm{y}$ and $\mathrm{m} \angle \mathrm{Q}=4 \mathrm{y}$ +20 , find measures of $\angle \mathrm{R}$ and $\angle \mathrm{S}$.

mAP + mL	$=180$
$y+(4 y+20$	$=180$
$5 y+20$	$=180$
$5 y$	$=160$
y	$=32$

\#14) Given parallelogram $A B C D$ with $m \angle C=x+75$ and $m \angle D$ $=3 x-199$, find the measures of each angle.

\#15) Find all the possible ordered pairs for the fourth vertex of a parallelogram with vertices at $\mathrm{J}(1,1), \mathrm{U}(3,4)$, and $\mathrm{N}(7,1)$.

\#16) If NCTM is a parallelogram, $m \angle N=12 x+10 y+5, m \angle C=$ $9 x$, and $m \angle T=6 x+15 y$, find $m \angle M$.

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
12 x+10 y+5=6 x+15 y \\
6 x+15 y+9 x=180
\end{array}\right\} \begin{array}{l}
15 x+15 y=180 \\
x+y=12
\end{array}} \\
6 x+10 y+5=15 y \\
6 x-5 y+5=0 \\
6 x-5 y=-5
\end{array}\right.
$$

$$
\begin{aligned}
6 x-60+5 x & =-5 \\
11 x-60 & =-5 \\
11 x & =55 \\
x & =5
\end{aligned}
$$

Quadrilaterals - Parallelograms

Homework Section 6.2
\#17) NCSM is a parallelogram with diagonals $\overline{N S}$ and $\overline{M C}$ that intersect at point P. If $N P=4 x+20, N S=13 x, P C=x+y$, and $P M=2 y-2$, find $C M$

\#1) True, Def'n of Parallelogram
\#2) True, Vertical Angles Theorem, diagonals of parallelogram bisect each other, and SAS Theorem.
\#3) True, opposite angles of a parallelogram are \cong
\#4) False
\#5) False
\#6) True, diagonals of a parallelogram bisect each other.
\#7) $(80,80,100)$
\#8) $(30,45,75)$
\#9) $(25,35,120)$
\#10) Yes. The opposite sides are parallel because of the converse to the corresponding angles postulate. Thus, JULY is a parallelogram by definition of a parallelogram.
\#11) No, because consecutive interior angles are not supplementary. \#12) In a parallelogram, opposite sides are congruent. In this figure the opposite sides of 8 and 9 are not congruent.
\#13) $m \angle R=32, m \angle S=148$
\#14) $m \angle A=151, m \angle B=29, m \angle C=151, m \angle D=29$
\#15) $(9,4),(5,-2),(-3,4)$
\#16) 45
\#17) 36

