

Geometry Page 1 of 4

Is each quadrilateral a parallelogram? Justify your answer. #10)

YES, both pairs of opposite sides are parallel.

#12) Explain why it is impossible for the figure to be a parallelogram.

Opposite sides are not congruent.

$$\begin{array}{c} \text{Durawork Section 6.2} \\ \text{Maximum Variable ordered pars for the fourth vertex of a parallelogram PQRS with m 2P + y and m 2Q + 4Y \\ + 20. \underline{\text{Indemasures of 7.R and 2S}} \\ \hline \\ \text{Maximum Variable ordered pars for the fourth vertex of a parallelogram with vertices at (1,1), (13, 4), and N(7,1), (14, 4), and N(7,1), and N(7,1$$

Geometry Page **3** of **4**

	Quadrilaterals	- Parallelograms
	#17) NCSM is a parallelogram with diagonals \overline{NS} and \overline{MC} that intersect at point P. If NP = 4x + 20, NS = 13x, PC = x + y, and PM = 2y - 2, find CM	IN SECUOID 0.2 IN A ME
	1 N C 21-2 A S M S	
Z	NP + PS = NS (4x+20) + (4x+20) = 13x 8x+40 = 13x	
(Z	$\frac{96=3\times}{8=\times}$	
Q	x + y = 2y - 2 (8) + y = 2y - 2 8 = y - 2 10 = y	
(CM = CP + PM = $(x+y) + (2y-2)$ = $x+3y-2$	
	= (8) + 3(10) - 2 = $8 + 30 - 2$ CM = 36	 #1) True, Der nor Parallelogram #2) True, Vertical Angles Theorem, diagonals of parallelogram bisect each other, and SAS Theorem. #3) True, opposite angles of a parallelogram are ≅ #4) False #5) False #6) True, diagonals of a parallelogram bisect each other. #7) (80, 80, 100)
		 #8) (30, 45, 75) #9) (25, 35, 120) #10) Yes. The opposite sides are parallel because of the converse to the corresponding angles postulate. Thus, JULY is a parallelogram by definition of a parallelogram. #11) No, because consecutive interior angles are not supplementary. #12) In a parallelogram, opposite sides are congruent. In this figure the opposite sides of 8 and 9 are not congruent. #13) m/R = 32, m/S = 148
		#14) m∠A = 151, m∠B = 29, m∠C = 151, m∠D = 29 #15) (9, 4), (5, -2), (-3, 4) #16) 45 #17) 36