Applying Congruent Triangles – Medians, Altitudes and Bisectors

Homework Section 5.1

#1) Find AB if \overline{BD} is a median of \triangle ABC.

#2 Find AC if \overline{BD} is an altitude of $\triangle ABC$.

① mLBDC=90 ② FIND
$$AC = AD + DC$$

 $5x + (0 = 90)$
 $5x = 80$
 $X = 16$
 $= 3x + (0x + 7)$
 $= 5(6) + 7$
 $= 80 + 7$
 $AC = 87$

#3) Find m \angle ABC if \overline{RD} is an angle bisector of \triangle ABC.

①
$$mLABC = mLABD + mLDBC$$
 ② $mLABC = (ext70)$
 $(ext70 = (2x+40) + (2x+40)$
 $(ext70 = 4x+80)$
 $2x+70 = 80$
 $2x = 10$
 $mLABC = (ext70)$
 $= (65) + 70$
 $= 30 + 70$
 $mLABC = (00)^{\circ}$

#4) Find AC if \overline{BD} is an altitude of $\triangle ABC$.

Draw and label a figure for each statement. #5) Isosceles triangle ABC, with vertex angle A, where \overline{AD} is an altitude, median, and angle bisector.

#6) ΔDEF is a right triangle with right angle at F. \overline{FG} is a median of ΔDEF and \overline{GH} is the perpendicular bisector of \overline{DE} .

#7) Three medians of a triangle intersecting in the interior of the triangle.

#8) Altitude \overline{FA} on the exterior of ΔEFG .

Geometry Page 1 of 2

Applying Congruent Triangles - Medians, Altitudes and Bisectors

Homework Section 5.1

Name

Answer each question if A(1, 6), B(13, 2), and C(-7, 12) are the vertices of \triangle ABC

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$M = \left(\frac{(1) + (13)}{2}, \frac{(6) + (2)}{2}\right)$$

$$M = \left(\frac{14}{2}, \frac{8}{2}\right)$$

$$M = \left(7, 4\right)$$

#10) What is the slope of the perpendicular bisector of \overline{AB} ?

$$m_{\overline{AB}} = \frac{\Delta Y}{\Delta x}$$

$$= \frac{(\omega) - (2)}{(1) - (13)}$$

$$= \frac{4}{712}$$

$$m_{\overline{AB}} = \frac{1}{3}$$

$$-\frac{1}{3}$$

#11) Points S, T, and U are the midpoints of \overline{DE} , \overline{EF} , and \overline{DF} , respectively. Find x, y, and z.

$$5x+15=12$$
 $2y-4=14$ $3z+1=17$
 $5x=-3$ $2y=18$ $3z=16$
 $x=-3/5$ $y=9$ $z=16/3$

#1) 20 #2) 87 #3) 54 #4) 91 #5) - #8) See key #9) (7, 9) #10) 3

#11) $\left(-\frac{3}{5}, 9, \frac{16}{3}\right)$