$\qquad$
Q1 Review 12018

1. Part of a proof is shown. Place statements and reasons in the table to complete the proof.

Given $\overline{L E} \cong \overline{M R}, \overline{E G} \cong \overline{R A}$
Prove $\overline{L G} \cong \overline{M A}$


Statement
Reason
a. $\overline{L E} \cong \overline{M E}, \overline{E G} \cong \overline{R A}$
a. Given
b.

$$
\begin{aligned}
& L E=M R \\
& E G=R A
\end{aligned}
$$

c.

$$
\begin{aligned}
& L G=L E+E G \\
& M A=M R+R A
\end{aligned}
$$

d. $\quad L G=M R+R A$
d. Substitution Property of Equality (double)
e. $\angle G=M A$
f. $\overline{L G} \cong \overline{M A}$

2. Which term is defined as an angle formed by two opposite rays?
(A) Straight angle
B. Vertical angle
C. Corresponding angle
D. Complementary angle
3. Kevin asked Olivia what the Supplement Theorem is. Olivia responded, " $m \angle 1+$ $m \angle 2=180$." What definition did Olivia actually give?
A. Definition of a straight angle

B Definition of supplementary angles
C. Definition of complementary angles
D. Definition of transversal
4. Jeremy wants to know the density of a rock in grams per cubic centimeter. The rock has a mass of 4.45 kilograms and a volume of 508 cubic centimeters.
What is the density of the rock, in graphs per cubic centimeter $\left(\frac{\mathrm{g}}{\mathrm{cm}^{3}}\right)$ ?

$$
\frac{\frac{4450}{508}}{4.45 \mathrm{gg}} \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \cdot \frac{1000 \mathrm{~g}}{1 \mathrm{gg}}=4450 \mathrm{~g}
$$

5. Line $\boldsymbol{k}$ has a slope of 4 . Line $\boldsymbol{j}$ is perpendicular to line $\boldsymbol{k}$ and passes through the point $(-2,8)$. Create the equation for line $j$.

$$
\frac{P_{\text {Point }}^{(-2,8)}}{\text { Slops }_{m}=4} \frac{\text { Point-Slopefon }}{y_{m}=-\frac{1}{4}} \begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-8=-\frac{1}{4}(x+2)
\end{aligned}
$$

6. $\overline{A C}$ has endpoints $\mathrm{A}(-1,-3.5)$ and $\mathrm{C}(5,-1)$. Point B is on $\overline{A C}$ and is located at $(0.2,-3)$.
What is the ratio of $\frac{A B}{B C}$ ?

$$
\begin{array}{rlrl}
A B & =\sqrt{[\Delta x]^{2}+[\Delta y]^{2}} \quad B C & =\sqrt{[\Delta x]^{2}+[\Delta y]^{2}} \\
& =\sqrt{[-1-0.2]^{2}+[-3.5-(-3)]^{2}} & =\sqrt{[(5)-(0.2)]^{2}+\left[(-1)-(-35]^{2}\right.} \\
& =\sqrt{[-1.2]^{2}+[0.5]^{2}} & & =\sqrt{[4.8]^{2}+[2]^{2}} \\
& =\sqrt{1.44+0.25} & & =\sqrt{23.04+4} \\
& =\sqrt{1.69} & & =\sqrt{27.04} \\
A B & \approx 1.3 & B C & =5.2
\end{array}
$$

$$
\frac{A B}{B C}=\frac{1.3}{5.2}
$$

7. A study reports that in 2010 the population of the United States was $308,745,538$ people and the land area was approximately $3,531,905$ square miles.
Based on the study, what was the population density, in people per square mile, of the United States in 2010? Round your answer to the nearest tenth.
 people per square mile

$$
\frac{308,245,538 \text { people }}{3,531,905 \text { mi le }}=87.4 \mathrm{p} / \mathrm{mi}^{2}
$$

$\qquad$
8. Square $A B C D$ has vertices at $A(1,2)$ and $B(3,-3)$. What is the slope of $\overline{B C}$ ?


$$
\begin{aligned}
m \overline{A B} & =\frac{\Delta y}{\Delta x}=\frac{2-(-3)}{1-3}=\frac{5}{-2} \\
m \overline{B C} & =1 m \overline{A B}=\frac{2}{5}
\end{aligned}
$$

9. The graph of line $m$ is shown


What is the equation of the line that is perpendicular to line $m$ and passes through the point $(-2,4)$ ?
Point
$(-2,4)$ $\frac{\text { slope }}{m}=-4 / 3$
$\perp_{m}=\frac{3}{4}$

$$
\begin{aligned}
& \text { Point - slope for } \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

$$
y-4=\frac{3}{4}(x+2)
$$

