\qquad

Chapter 1 - Tools For Geometry

1.1

Undefined terms in geometry: point, line, and plane
Point indicates a location. It has no dimension, is represented by a dot.

Line is represented by a straight path that extends indefinitely in two directions and has no thickness or width. A line contains infinite many points.

Plane is represented by a flat surface that extends without end in two dimensions and has not thickness. A plane contains infinite many points.
collinear points - points that lie on the same line.

Coplanar - coplanar points are points that lie in the same plane.

Space - space is the set of all points

Segment - Two points and all the points between them.

Ray-a segment that is extended indefinitely in one direction

Opposite rays - two collinear rays that extend in opposite directions

Postulate - a conditional statement that is accepted as being true.

Postulate 1-1 - Through any two points is exactly one line.
Postulate 1-2 - If two lines intersect, then their intersection is exactly one point.

Postulate 1-3 - If two planes intersect, then their intersection is a line.

Postulate 1-4 - Through any three noncollinear points there is exactly one plane.

Terms, Postulates and Theorems
Congruent Segments $-\overline{O X} \cong \overline{E N}$ iff $O X=E N$
Definition of Midpoint - If M is the midpoint of $\overline{P Q}$, then M is the point between P and Q such that $P M=M Q$.

Segment Bisector - any segment, line, or plane that intersects a segment at its midpoint.

Midpoint in the Coordinate Plane - The coordinates of the midpoint of a line segment whose endpoints have coordinates ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)

$$
M=\left(\frac{\Sigma \mathrm{x}}{2}, \frac{\Sigma y}{2}\right)
$$

Distance formula - The distance, d , between any points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the following formula:

$$
d=\sqrt{[\Delta x]^{2}+[\Delta y]^{2}}
$$

1.3

Ray: a segment that is extended indefinitely in one direction

Vertex: the endpoint of a ray
Angle: a figure that consists of two rays with a common endpoint

Sides: the two rays of an angle
Measure of an angle: the number of degrees in an angle
Opposite rays: two collinear rays that extend in opposite directions

Straight angle: the figure formed by two opposite rays

Acute Angle: an angle whose measure is less than 90 and greater than zero.

Obtuse Angle: an angle whose measure is greater than 90 and less than 180.

Right Angle: an angle whose measure is 90.

Congruent Angles $-\angle C A T \cong \angle D O G$ iff $m \angle C A T=$ $m \angle D O G$

Angle Bisector: a line, ray, or segment that separates an angle into two congruent angles.

1.4

Segment - A segment consists of two endpoints and all the points between them.

Segment Addition Postulate -A is between C and T iff $C A+A T=C T$.

Angle Addition Postulate $-R$ is in the interior of $\angle P Q S$ iff $m \angle P Q R+m \angle R Q S=m \angle P Q S$.

Postulate - A statement that assumed to be true.

Theorem - A statement that can be proved true using established facts.

Adjacent Angles - two angles that have the same vertex, share common ray, and have no common interior points.

Complementary Angles - two angles that sum to 90°.
Complement Theorem - If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary.

Supplementary Angles - two angles that sum to 180°.
Linear Pair - two adjacent angles whose non-common sides form opposite rays (form a straight angle).

Supplement Theorem - If two angles form a linear pair, then they are supplementary.

Vertical Angles - two nonadjacent angles formed by intersecting lines.

Vertical Angles Theorem: Vertical angles are congruent.

Points, Lines \& Planes

Undefined terms in geometry: point, line, and plane
Point indicates a location. It has no dimension, is represented by a dot.

Line is represented by a straight path that extends indefinitely in two directions and has no thickness or width. A line contains infinite many points.

Plane is represented by a flat surface that extends without end in two dimensions and has not thickness. A plane contains infinite many points.
collinear points - points that lie on the same line.

Coplanar - coplanar points are points that lie in the same plane.

Space - space is the set of all points

Segment - Two points and all the points between them.

Notes Section 1.1

Ray - a segment that is extended indefinitely in one direction

Opposite rays - two collinear rays that extend in opposite directions

Postulate - a conditional statement that is accepted as being true.

Postulate 1-1 - Through any two points is exactly one line.

Postulate 1-2 - If two lines intersect, then their intersection is exactly one point.

Postulate 1-3 - If two planes intersect, then their intersection is a line.

Postulate 1-4 - Through any three noncollinear points there is exactly one plane.

1. What are two other ways to name $\overleftrightarrow{Q T}$?
2. What are two other ways to name \mathbb{P} ?
3. Name three collinear points.
4. Name a point not coplanar with points R, S, and V.

5. Name the three line segments.
6. Name the four rays.
7. Which rays are opposite rays?
8. What is the intersection of plane CUE and plane EBT?

$\overline{S T}$
$S T$

$$
\begin{aligned}
& A B=4 \mathrm{~cm} \\
& B C=4 \mathrm{~cm}
\end{aligned}
$$

Definition of Midpoint - If M is the midpoint of $\overline{P Q}$, then M is the point between P and Q such that $P M=M Q$.

Notes Section 1.2
Midpoint in the Coordinate Plane - The coordinates of the midpoint of a line segment whose endpoints have coordinates $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)

$$
M=\left(\frac{\Sigma \mathrm{x}}{2}, \frac{\Sigma y}{2}\right)
$$

Distance formula - The distance, d , between any points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the following formula:

$$
d=\sqrt{[\Delta x]^{2}+[\Delta y]^{2}}
$$

Segment Bisector - any segment, line, or plane that intersects a segment at its midpoint.
1.

Given O is the midpoint of $\overline{D G}$

Find DO

2. $\overline{J M}$ bisects $\overline{A X}$ at $\mathrm{M} . A M=2 x+45, M X=3 x+30$, find $M X$.
3. Find the midpoint and length of $\overline{A B}$.

Midpoint of $\overline{A B}=$
$A B=$
4. Find the midpoint and length of $\overline{C D}$.

NOT SO EASY

$C(-6,-5)$
D $(7,3)$

Midpoint of $\overline{C D}=$
$C D=$
5. $\overline{M E}$ has the endpoints of $\mathrm{M}(-6,4)$ and $\mathrm{E}(5,-2)$. Find the midpoint and length of $\overline{M E}$.
\qquad

Angles Measures

Ray: a segment that is extended indefinitely in one direction
Vertex: the endpoint of a ray

Angle: a figure that consists of two rays with a common endpoint
Sides: the two rays of an angle

Interior and exterior of an angle:

Measure of an angle: the number of degrees in an angle

Opposite rays: two collinear rays that extend in opposite directions
Straight angle: the figure formed by two opposite rays

Acute Angle: an angle whose measure is less than 90 and greater than zero.

Obtuse Angle: an angle whose measure is greater than 90 and less than 180.

Notes Section 1.3

Congruent Angles $-\angle C A T \cong \angle D O G$ iff $m \angle C A T=$ $m \angle D O G$

Equalvs Congruent

$m \angle D O G=$
$\angle D O G \cong$

$m \angle A=70^{\circ}$
$m \angle B C A=70^{\circ}$

$\angle 1 \cong \angle 2$

Angle Bisector: a line, ray, or segment that separates an angle into two congruent angles.

Right Angle: an angle whose measure is 90.
6. Estimate, measure and classify each angle using a protractor

7.

Use the diagram to answer each question.

8. $\angle C B J \cong$
9. $\angle F J H \cong$
10. If $m \angle E F D=75$, then $m \angle J A B=$
11. If $m \angle G H F=130$, then $m \angle J B C=$
12.

Given

$\overrightarrow{A T}$ is the angle bisector of $\angle M A H$
$m \angle M A T=60^{\circ}$ $m \angle T A H=4 x+20$

Find x

13.

Given

$\angle L O V \cong \angle V O E$
$m \angle L O V=7 x-14$
$m \angle V O E=3 x+12$

Find x

Find $m \angle L O V$

Addition Postulates

Segment - A segment consists of two endpoints and all

Segment Addition Postulate -A is between C and T iff

1. Find $O G$ if O is between D and $G, D O=2 x-4, O G=$ $3 x$, and $D G=26$.
2.

Given $M A=5 x-3$
$A N=30$
$M N=8 x+6$
Find X.
the points between them. $C A+A T=C T$.
3.

Given
$m \angle M A T=60^{\circ}$
$m \angle M A H=140^{\circ}$
$m \angle T A H=4 x+20$

Find x

4.

Given

$m \angle L O E=84^{\circ}$
$m \angle L O V=4 x+1$
$m \angle V O E=5 x+2$

Find x

Find $m \angle L O V$

Angle Pairs

Postulate - A statement that assumed to be true.

Theorem - A statement that can be proved true using established facts.

PAIRS OF ANGLES

Adjacent Angles - two angles that have the same vertex, share common ray, and have no common interior points.

Complementary Angles - two angles that sum to 90°. Each angle is called the complement.

Complement Theorem - If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary.

Supplementary Angles - two angles that sum to 180°. Each angle is called the supplement.

Linear Pair - two adjacent angles whose non-common sides form opposite rays (form a straight angle).

Supplement Theorem - If two angles form a linear pair, then they are supplementary.

Notes Section 1.5

Vertical Angles - two nonadjacent angles formed by intersecting lines.

Vertical Angles Theorem: Vertical angles are congruent.

Identify Angle Pairs

ANGLES

Adjacent:
Vertical:

Complementary:
Supplementary:

$\angle A F E$ and $\angle E F D$ are
$\angle A F E$ and $\angle B F C$ are
$\angle B F C$ and $\angle C F D$ are
$\angle A F E$ and $\angle C F D$ are

Diagrams

1. $\angle \mathrm{DOG}$ and $\angle \mathrm{GOT}$ are complementary angles. If $\mathrm{m} \angle \mathrm{DOG}=2 \mathrm{x}+18$ and $\mathrm{m} \angle \mathrm{GOT}=7 \mathrm{x}+9$, then find m $\angle D O G$.
2. $\angle H A M$ and $\angle C E S$ are supplementary. If $m \angle H A M=4 x+27$ and $m \angle C E S=14 x+9$, then find the value of x.
3. \angle SUP and $\angle P U T$ form a linear pair.

If $m \angle S U P=2 x-20$, and $m \angle P U T=3 x+10$, then find the value of x.
4. Find $m \angle 1 \& m \angle 2$

5. Find x and $m \angle C A B$

Chapter 1 Summary

1. Summarize the main idea of the chapter
2. Terms (Include name and definition). Also include key example or picture for each term
3. Theorems and Postulates. Also include key example for each theorem or postulate
4. Key examples of the most unique or most difficult problems from notes, homework or application.

Chapter 2 - Reasoning and Proof

2.1

Inductive Reasoning: looking at several specific situations to arrive at a conjecture.

Conjecture: an educated guess.
Counterexample: a false example; an example that proves a conjecture false.

ConditionalStatement: A statement that can be written in "if-then" form.

Hypothesis: the portion of a if-then statement that immediately follows "if."

Conclusion: the portion of a if-then statement that immediately follows "then."

Converse: a statement made by interchanging the hypothesis and conclusion.

Inverse: a statement made by negating both the hypothesis and conclusion of the conditional.

Contrapositive: a statement made by negating both the hypothesis and conclusion of the converse statement

Terms, Postulate and Theorems

2.2

Properties of Equality
For all real numbers a, b and c, the following are true...
Reflexive Property of Equality
For every number $a, a=a$.
Symmetric Property of Equality
If $a=b$, then $b=a$.
Transitive Property of Equality
If $a=b$, and $b=c$, then $a=c$.
Addition \& Subtraction Properties of Equality
If $a=b$, then $a \pm c=b \pm c$.
Multiplication \& Division Properties of Equality
If $a=b$, then $a \bullet c=b \bullet c$, and $a / c=b / c$.

Distributive Property of Equality
$a(b+c)=a b+a c$.
Substitution Property of Equality
If $a=b$, then a may be replaced by b in an equation.

2.3

Theorem: A statement that must be proved true through deductive reasoning using definitions, postulates, and undefined terms.

Proof: A logical argument in which each statement is supported by a statement that is accepted as being true.

Midpoint Theorem

If M is the midpoint of $\overline{A B}$, then $\overline{A M} \cong \overline{M B}$
Theorem 2-1: Congruence of segments is reflexive, symmetric, and transitive.

2.4

Theorem 2-5: Congruence of angles is reflexive, symmetric, and transitive.

Theorem 2-6: Angles supplementary to the same angle or to congruent angles are congruent.

Theorem 2-7: Angles complementary to the same angle or to congruent angles are congruent.

Theorem 2-9: Perpendicular lines intersect to form four right angles.

Theorem 2-10: All right angles are congruent.

NOTE: For your quiz...
Any "unnamed" theorem or postulate will not be matching, but be multiple choice. For example,

Theorem 2-5: Congruence of angles is reflexive, symmetric, and transitive.

Congruence of angles is reflexive, symmetric and
A. Transitive
B. Systematic
C. Hyperbolic
D. Generic
\qquad

Inductive Reasoning

Notes Section 2.1

Inductive Reasoning: looking at several specific situations to arrive at a conjecture.

Conjecture: an educated guess.
Counterexample: a false example; an example that proves a conjecture false.

Use inductive reasoning to conjecture about the next 2 numbers in the pattern.

1. $1,4,16,64 \ldots$
2.

3.

4. $16,8,4,2,1 \ldots$
5. How many dots in the $20^{\text {th }}$ figure.

6.

Try and figure out the $43^{\text {rd }}$ term of the following sequence:

$$
A, E, I, O, U, A, E, \ldots
$$

Give a counterexample for each of the false conjectures given.

1. If the name of a month starts with the letter J, it is a summer month.

Counterexample: \qquad
2. Multiplying a number by -2 makes the product negative.

Counterexample: \qquad
3. If you teach Geometry, you are bald.

Counterexample: \qquad

Conditional Statement $=A$ statement that can be written in "if-then" form.

1. Write a conditional statements.
$\underline{\text { Hypothesis }}=$ the portion of a if-then statement that immediately follows "if."
2. Identify the hypothesis from 1.

Conclusion $=$ the portion of a if-then statement that immediately follows "then."
3. Identify the conclusion from 1.

Write the following conditionals in "if-then" form.
4. "Adjacent angles have a common vertex."
5. "Vertical angles are congruent."

Converse $=$ a statement made by interchanging the hypothesis and conclusion.
6. Write the converse of the conditionals from 5 .

Inverse = a statement made by negating both the hypothesis and conclusion of the conditional.
7. Write the inverse of the conditionals you made from 5 .

Contrapositive $=$ a statement made by negating both the hypothesis and conclusion of the converse statement
8. Write the contrapositive of the conditionals you made from 5.

The contrapositive will ALWAYS have the same truth-value as the original conditional! The converse and inverse MIGHT have the same truth-value, but it also MIGHT NOT have the same truth-value.

Summary of Related Conditional Statements		
Conditional Statement	$p \rightarrow q$	If p, then q.
Converse	$q \rightarrow p$	If q, then p.
Inverse	$\sim_{p} \rightarrow \sim_{q}$	If not p, then not q.
Contrapositive*	$\sim_{q} \rightarrow \sim_{p}$	If not q, then not p.

If you notice, the inverse is the contrapositive of the converse. Therefore, the inverse and the converse will always have the same truth-value.
\qquad

Algebraic Proofs

Properties of Equality For all real numbers a, b and $\mathrm{c} . .$.

Reflexive Property of Equality For every number $a, a=a$.

Symmetric Property of Equality

 If $a=b$, then $b=a$.Transitive Property of Equality
If $a=b$, and $b=c$, then $a=c$.

Addition \& Subtraction Properties of Equality If $a=b$, then $a \pm c=b \pm c$.

Multiplication \& Division Properties of Equality If $a=b$, then $a \bullet c=b \bullet c$, and $a / c=b / c$.

Distributive Property of Equality
$a(b+c)=a b+a c$.

Substitution Property of Equality

If $a=b$, then a may be replaced by b in an equation.

Examples: Tell which property justifies each conclusion.

1. Given: $6 x+2=12$

Conclusion: $\quad 6 x=10$

$$
\begin{aligned}
\text { 2. Given: } & 45=x \\
\text { Conclusion: } & x=45
\end{aligned}
$$

3. Given:

$$
3 x-7 x=20
$$

Conclusion:

$$
-4 x=20^{\circ}
$$

4. Given:
$4(q-x)=r$
Conclusion: $\quad 4 q-4 x=r$
5. If $a=r$ and $r=60^{\circ}$, then $a=60^{\circ}$.
6. If B is the midpoint of $\overline{G H}$, then... \qquad

A two-column proof lists each statement on the left with a justification on the right. Each step follows logically from the line before it.

Fill in the missing statements or reasons for the following two-column proof.

$\begin{aligned} & \text { Given: } 45+2(x-10)=85 \\ & \text { Prove: } x=30 \end{aligned}$	\leftarrow This line tells you everything that has been \leftarrow This line tells you what you must \qquad
Statement	Reaso
1. $45+2(x-10)=85$	1.
2. $2(x-10)=40$	2.
3. $2 x-20=40$	3.
4. $2 x=60$	4.
5. $x=30$	5.

Prove the following.
\#8. Prove that if $2 x-7=\frac{1}{3} x-2$, then $\mathrm{x}=3$.

Given: \qquad

Prove: \qquad
Statement
1.
1.
2.
2.
3.
4.
5.
6.
6.
9. Justify each step in solving the equation. $2 x-3=\frac{2}{3}$

Statement

Reason
$1 . \quad 1$.
2.
2.
3.
3.
4.
4.
5.
5.

Proving Segments

Notes Section 2.3
Theorem = A statement that must be proved true through deductive reasoning using definitions, postulates, and undefined terms.

Proof $=$ A logical argument in which each statement is supported by a statement that is accepted as being true.

Midpoint Theorem
If M is the midpoint of $\overline{A B}$, then $\overline{A M} \cong \overline{M B}$

Theorem 2-1: Congruence of segments is reflexive, symmetric, and transitive.

Reflexive Property

Symmetric Property

Transitive Property

Prove the Midpoint Theorem using a two-column proof.
(If the directions tell you to write a proof, always do a TWO COLUMN proof.)

1. Given

Prove

Statement

Reason
\#1)
\#1)
\#2)
\#2)
\#3)
\#3)
2. Prove the symmetric part of Theorem 2-1

Given $\overline{A B} \cong \overline{C D}$
Prove $\overline{C D} \cong \overline{A B}$
Statement

A
B

Reason

1) $\overline{A B} \cong \overline{C D}$
2) $A B=C D$
3) $\mathrm{CD}=\mathrm{AB}$
4) $\overline{C D} \cong \overline{A B}$
5)
6)
7)
8)

$\begin{array}{lll}\text { 3. } & \text { Given } & \overline{S T E P} \\ & \text { Prove } & S P=S T+T E+E P\end{array}$

Statement

1) $\overline{S T E P}$
2) $S P=S T+T P$
3) $T P=T E+E P$
4) $S P=S T+T E+E P$
4. Given $\overline{R S} \cong \overline{U V}$
$\begin{array}{ll} & \overline{S T} \cong \overline{V W} \\ \text { Prove } & \overline{R T} \cong \overline{U W}\end{array}$

Statement

1) $\overline{R S} \cong \overline{U V}$ $\overline{S T} \cong \overline{V W}$
2)
3)
4)
5)
6)
7)

Proving Angles

Theorem 2-5: Congruence of angles is reflexive, symmetric, and transitive.

Reflexive Property

Symmetric Property

Transitive Property

Theorem 2-9: Perpendicular lines intersect to form four right angles.

Theorem 2-10: All right angles are congruent.

Notes Section 2.4

Theorem 2-7: Angles complementary to the same angle or to congruent angles are congruent.

Theorem 2-6: Angles supplementary to the same angle or to congruent angles are congruent.

1. Prove transitive part of theorem 2-5:
Given

$$
\begin{aligned}
& \angle 1 \cong \angle 2 \\
& \angle 2 \cong \angle 3
\end{aligned}
$$

Prove $\angle 1 \cong \angle 3$
\#1)
\#1)
\#2)
\#3)
\#3)
\#4)
\#4)
2. Prove Vertical Angles Theorem:

Given $\quad \angle 1$ and $\angle 2$ form a linear pair $\angle 2$ and $\angle 3$ form a linear pair

Prove $\angle 1 \cong \angle 3$ Statement

Reason
\#1)
\#2)
\#3)
\#3)
3. Prove theorem 2-6-Angles supplementary to congruent angles a re congruent.

Statement Reason
\#1)
\#1)
\#2)
\#2)
\#3)
\#3)
\#4)
\#4)
\#5)
\#6)
\#7)
\#7)

Chapter 2 Summary

1. Summarize the main idea of the chapter
2. Terms (Include name and definition). Also include key example or picture for each term
3. Theorems and Postulates. Also include key example for each theorem or postulate
4. Key examples of the most unique or most difficult problems from notes, homework or application.

Chapter 3 - Transversals

3.1

Parallel Lines - Two coplanar lines that never intersect.
Skew Lines - Two noncoplanar lines that never intersect.
Parallel Planes - Two planes that never intersect.
Transversal - A line that intersects 2 or more lines in different places.

Alternate Interior Angles - when a transversal intersects two lines, these pair of angles are on opposite sides of the transversal and between the non-transversal lines.

Consecutive Interior Angles (aka Same-Side Interior Angles) - when a transversal intersects two lines, these pair of angles are on same sides of the transversal and between the non-transversal lines.

Corresponding Angles - When a transversal intersects two lines, these pair of angles are in the same position but a different intersection.

Alternate Exterior Angles - when a transversal intersects two lines, these pair of angles are on opposite sides of the transversal and outside the non-transversal lines.

Consecutive Exterior Angles - when a transversal intersects two lines, these pair of angles are on the same sides of the transversal and outside the non-transversal lines.

Terms, Postulates and Theorems

3.2

Corresponding Angles Postulate - If two parallel lines are cut by a transversal, then corresponding angles are congruent.

Alternate Interior Angles Theorem - If two parallel lines are cut by a transversal, then alternate interior angles are congruent.

Alternate Exterior Angles Theorem - If two parallel lines are cut by a transversal, then alternate exterior angles are congruent.

Consecutive Interior Angles Theorem - If two parallel lines are cut by a transversal, then consecutive interior angles are supplementary.

Consecutive Exterior Angles Theorem - If two parallel lines are cut by a transversal, then consecutive exterior angles are supplementary.

Converse to the Corresponding Angles Postulate If corresponding angles are congruent, then a transversal cuts two parallel lines.

Converse to the Alternate Interior Angles Theorem If alternate interior angles are congruent, then a transversal cuts two parallel lines.

Converse to the Alternate Exterior Angles Theorem If alternate exterior angles are congruent, then a transversal cuts two parallel lines.

Converse to the Consecutive Interior Angles Theorem If consecutive interior angles are supplementary, then a transversal cuts two parallel lines.

Converse to the Consecutive Exterior Angles Theorem If consecutive exterior angles are supplementary, then a transversal cuts two parallel lines.

Postulate 3.2 - Given a line m and a point A not on the line, there is only one line n though the point A parallel to the line m.

Angle Sum Theorem (aka Triangle Sum Theorem) - The sum of the interior angles of a triangle is 180°.

Auxiliary Line - When you extend a segment in a figure.
Exterior Angle Theorem - The measure of an exterior angle is equal to the sum of its two remote interior angles.

3.5

Formula for slope of a line

$$
m=\frac{\Delta y}{\Delta x}
$$

Slope-Intercept form
 $$
y=m x+b
$$

Point-Slope form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

3.6

Postulate 3.3 - Two nonvertical lines are parallel if they have the same slope

Postulate 3.4 - Two lines are perpendicular if and only if their slopes are negative reciprocals.

NOTE: For your quiz...
Any "unnamed" theorem or postulate will not be matching, but be multiple choice. For example,

Theorem 2-5: Congruence of angles is reflexive, symmetric, and transitive.

Congruence of angles is reflexive, symmetric and
E. Transitive
F. Systematic
G. Hyperbolic
H. Generic
\qquad

Parallel Lines - Two coplanar lines that never intersect.

Skew Lines - Two noncoplanar lines that never intersect.

Parallel Planes - Two planes that never intersect.

Transversal - A line that intersects 2 or more lines in different places.

Alternate Interior Angles - when a transversal intersects two lines, these pair of angles are on opposite sides of the transversal and between the non-transversal lines.

Consecutive Interior Angles (aka Same-Side Interior Angles) - when a transversal intersects two lines, these pair of angles are on same sides of the transversal and between the non-transversal lines.

Corresponding Angles - When a transversal intersects two lines, these pair of angles are in the same position but a different intersection.

Alternate Exterior Angles - when a transversal intersects two lines, these pair of angles are on opposite sides of the transversal and outside the non-transversal lines.

Consecutive Exterior Angles - when a transversal intersects two lines, these pair of angles are on the same sides of the transversal and outside the non-transversal lines.

Using the figure on the right, name as many parts as possible.
\#1) Parallel segments
\#2) Parallel lines
\#3) Skew segments
\#4) Skew lines
\#5) Parallel Planes

Using the figure on the right, name 2 pairs of each.
\#6) Alternate interior angles
\#7) Alternate exterior angles
\#8) Consecutive interior angles
\#9) Consecutive exterior angles
\#10) Corresponding angles

\#11) Linear pair
\#12) Vertical angles
\qquad

Properties of Parallel Lines

Corresponding Angles Postulate - If two parallel lines are cut by a transversal, then corresponding angles are congruent.

Alternate Interior Angles Theorem - If two parallel lines are cut by a transversal, then alternate interior angles are congruent.

Alternate Exterior Angles Theorem - If two parallel lines are cut by a transversal, then alternate exterior angles are congruent.

Consecutive Interior Angles Theorem - If two parallel lines are cut by a transversal, then consecutive interior angles are supplementary.

Consecutive Exterior Angles Theorems - If two parallel lines are cut by a transversal, then consecutive exterior angles are supplementary.

Fill in the chart with the angle relationships that we have just learned.

CONGRUENT

SUPPLEMENTARY

The above chart is only true if the transversal cuts

Ex 1: Find the measure of each angle and give a reason for knowing it.

Ex 2: Solve for x .

Ex 3: Solve for x .

Ex 4: Solve for x.

Ex 5: Find the value of x and y.

Proving Lines Parallel

Converse to the Corresponding Angles Postulate - If corresponding angles are congruent, then a transversal cuts two parallel lines.

Converse to the Alternate Interior Angles Theorem - If alternate interior angles are congruent, then a transversal cuts two parallel lines.

Converse to the Alternate Exterior Angles Theorem - If alternate exterior angles are congruent, then a transversal cuts two parallel lines.

Converse to the Consecutive Interior Angles Theorem - If consecutive interior angles are supplementary, then a transversal cuts two parallel lines.

Converse to the Consecutive Exterior Angles Theorem - If consecutive exterior angles are supplementary, then a transversal cuts two parallel lines.

Which lines are parallel?
\#1) $\angle 1 \cong \angle 2$
\#2) $\angle 2 \cong \angle 6$
\#3) $m \angle 1+m \angle 5=180^{\circ}$
\#4) $\angle 8 \cong \angle 3$

Ex 5: Complete the flow proof.

Given: $\angle 4 \cong \angle 6$

Prove: $l \| m$

Find the degree of the missing angle what would make lines u and v parallel.

Ex 7:

Find the value of x that would make the lines u and v parallel.
Ex 8:

Find the degree of the missing angle what would make lines ω and v parallel.

Ex 10:

Find the value of x that would make the lines u and v parallel.

Ex 11:

\qquad

Parallel Lines and Triangles

Notes Section 3.4
Postulate 3.2-Given a line m and a point A not on the line, there is only one line n though the point A parallel to the line m.

Angle Sum Theorem (aka Triangle Sum Theorem) - The sum of the interior angles of a triangle is 180°.

Ex 1: Find the missing angle.

Ex 2: Complete the proof. Given: $\triangle X Y Z, \overleftrightarrow{Y A} \| \overleftrightarrow{X Z}$ Prove: $m \angle 1+m \angle 2+m \angle 3=180^{\circ}$

Auxiliary Line - When you extend a segment in a figure.

Exterior Angle of a Polygon -

Remote Interior Angles -

Exterior Angle Theorem - The measure of an exterior angle is equal to the sum of its two remote interior angles.

Ex 4: Find $m \angle 1$

Ex 5: Find the value of all the variables.

Ex 6: Find the missing angle.

Ex 7: Find the value of x.

\qquad
Equations of Lines in the Coordinate Plane Notes Section 3.5

Formula for slope of a line

$$
m=\frac{\Delta y}{\Delta x}
$$

Slope-Intercept form $y=m x+b$

Point-Slope form
$y-y_{1}=m\left(x-x_{1}\right)$

Zero slope

1. Find the slope of a line containing $(4,6)$ and $(-3,4)$
2. Graph $y=-2 x+5$

3. Graph $x=6$
4. Graph $y=-5$
5. Write the equation of the line with slope of 5 and y intercept of -3.
6. Write the equation of the line through the point $(-3,6)$ with the slope -2 .
7. Write the equation of the line.

8. Write the equation of the line through $(-3,1)$ and $(4,8)$
9. Graph $y=-\frac{3}{2} x+1$

10. Write the equation of the line through $(4,1)$ and $(0,4)$.
\qquad

Slopes of Parallel and Perpendicular Lines

Postulate 3.3 - Two nonvertical lines are parallel if they have the same slope

Any two vertical lines are parallel and any two horizontal lines are parallel.

1. Write the equation of the line that is parallel to $y=-3 x$ -5 and goes through the point $(-1,8)$
2. Are the following lines parallel? Why or why not? $3 x-y=6$ $-6 x+2 y=24$

Notes Section 3.6
Postulate 3.4 - Two lines are perpendicular if and only if their slopes are negative reciprocals.

Vertical and horizontal lines are perpendicular

3. Write the equation of a line that is perpendicular to $y=x+2$ and contains the point $(15,-4)$.
4. Are the following equations perpendicular? Why or why not? $y=4 x+8$ $8 x-2 y=10$

A rectangle is a quadrilateral that has opposite sides that are parallel and adjacent sides that are perpendicular. Is quadrilateral $A B C D$ a rectangle? Why or why not? $A(1,1)$, $B(5,3), C(7,1)$ and $D(3,0)$

Try these...Write the equation of the line described.
5. Through $(1,-5)$ and parallel to $y=-9 x$
6. Through $(-3,2)$ and perpendicular to $y=3 x-4$

Chapter 3 Summary

1. Summarize the main idea of the chapter
2. Terms (Include name and definition). Also include key example or picture for each term
3. Theorems and Postulates. Also include key example for each theorem or postulate
4. Key examples of the most unique or most difficult problems from notes, homework or application.

Constructions - Segments \& Angles

1. Copying a segment

(a) Using your compass, place the pointer at Point A and extend it until reaches Point B. Your compass now has the measure of $A B$.

(b) Place your pointer at A' and then create the arc using your compass. The intersection is the same radii, thus the same distance as AB. You have copied the length $A B$.

NYTS (Now You Try Some)

Copy the given segment.

Create the length $3 A B$

A^{\prime}

2. Bisect a segment

(a) Given $\overline{A B}$

(d) Place your straightedge on the paper so that it forms $\overrightarrow{C D}$. The intersection of $\overleftrightarrow{C D}$ and $\overline{A B}$ is the bisector of $\overline{A B}$.

(b) Place your pointer at A, extend your compass so that the distance exceeds half way. Create an arc.

(e) I labeled it M , because it is the midpoint of $\overline{A B}$.

(c) Without changing your compass measurement, place your point at B and create the same arc. The two arcs will intersect. Label those points C and D.

NYTS (Now You Try Some)

Bisect the segment (find the midpoint).

3. Copy an angle

(a) Given an angle and a ray.

(d) Place your compass at point B and measure the distance from B to C. Use that distance to make an arc from B^{\prime}. The intersection of the two arcs is C^{\prime}.

(b) Create an arc of any size, such that it intersects both rays of the angle. Label those points B and C.

(e) Draw the ray $\overrightarrow{A^{\prime} C^{\prime}}$

(c) Create the same arc by placing your pointer at A^{\prime}. The intersection with the ray is B^{\prime}.

(f) The angle has been copied.

NYTS (Now You Try Some)

Copy the given angle.

\qquad
4. Construct a line parallel to a given line through a point not on the line.

NYTS (Now You Try Some)

Find the parallel line though the point not on the line.

Perpendiculars \& Bisectors

1. Construct the perpendicular bisector of a line segment

(c) Without changing your compass measurement, place your point at B and create the same arc. The two arcs will intersect. Label those points C and D.

2. Construct a line perpendicular to a given segment through a point on the line.
$\begin{array}{ll}\text { (a) Given a point on a line. } & \text { (b) Place your pointer a point A. Create }\end{array}$ arcs equal distant from A on both sides using any distance. Label the intersection points B and C.
(c) Place your pointer on point B and extend it past A. Create an arc above and below point A.

f) $\overleftrightarrow{D E}$ is perpendicular to the line through A.

NYTS (Now You Try Some)

Construct the perpendicular line through a point on the line.

3. Construct a line perpendicular to a given line through a point not on the line.
(a) Given a point A not on the line.
-

(d) Do the same things as step (c) but placing your pointer on point B. Label the intersection of the two arcs as point D.

(b) Place your pointer on point A, and extend It so that it will intersect with the line in two places. Label the intersections points B and C.
$\stackrel{A}{\bullet}$

(e) Create $\overleftrightarrow{A D}$

(c) Using the same distance, place your pointer on point C and create an arc on the opposite side of point A.
A
0

(f) $\overleftrightarrow{A D}$ is perpendicular to the given line through point A.

NYTS (Now You Try Some)

Construct the perpendicular line through a point not on the line.

4. Bisect an angle

(a) Given an angle.

(d) Do the same as step (c) but placing your pointer at point C. Label the intersection D .

(b) Create an arc of any size, such that it intersects both rays of the angle. Label those points B and C.

(e) Create $\overrightarrow{A D}, \overrightarrow{A D}$ is the angle bisector.

(c) Leaving the compass the same measurement, place your pointer on point B and create an arc in the interior of the angle.

(f) $\overrightarrow{A D}$ is the angle bisector.

NYTS (Now You Try Some)

Bisect the angle.

Inscribed Polygons

1. The construction of an inscribed equilateral.
(A) Given Circle A

(B) Create a diameter $\overline{B C}$

(E) The inscribed Equilateral

(D) Create $\overline{B D}, \overline{B E} \& \overline{E D}$

(C) Create a circle at C with radius $\overline{A C}$. Label the two intersections D and E .

2. The construction of an inscribed square.
(A) Given Circle A

(D) Create $\overline{B D}, \overline{D C}, \overline{C E} \& \overline{E B}$

(B) Create a diameter $\overline{B C}$

(E) The inscribed Square

NYTS (Now You Try Some)

Construct an inscribed Square.

\qquad
3. The construction of an inscribed hexagon.
(A) Given Circle A

(B) Create a diameter $\overline{B C}$

(E) Create $\overline{C D}, \overline{D F}, \overline{F B}, \overline{B G}, \overline{G E} \& \overline{E C}$
(D) Create a circle at B with radius \bar{B}
Label the two intersections F and G .

(C) Create a circle at C with radius $\overline{A C}$. Label the two intersections D and E .

(F) The inscribed Hexagon

NYTS (Now You Try Some)

Construct an inscribed Hexagon.

Constructions Summary

Can you do these things from the constructions chapter?

	I know what construct means
	I know each step to construct a segment bisector
	I know each step to construct a perpendicular bisector
	I know each step to construct a copy of a segment
	I know each step to construct a copy of an angle
	I know each step to construct a line parallel to a given line through a point not on the line
	I know each step to construct a line perpendicular to a given segment through a point not on the line
	I know each step to construct an inscribed equilateral triangle
	I know each step to construct an inscribed square
	I know each step to construct an inscribed hexagon
	I know the difference between inscribed and circumscribed

1. Summarize the main idea of the chapter
2. Terms (Include name and definition). Also include key example or picture for each term
3. Theorems and Postulates. Also include key example for each theorem or postulate
4. Key examples of the most unique or most difficult problems from notes, homework or application.
