
Question 4 (20(8)

Question 8 (2008)

Question 9 (20(8)

Question 11 (2018)

Jeremy wants to know the density of a rock in grams per cubic centimeter. The rock has a mass of 1.08 kilograms and a volume of 400 cubic centimeters.

What is the density of the rock, in **grams** per cubic centimeter $\left(\frac{g}{cm^3}\right)$?

Question 12 (2018)

The two-way table shows the number of births, in thousands, in the United States for the years 2010 and 2011.

													Total
													4017
2011	322	299	330	315	328	335	348	362	346	331	328	327	3966

A baby born in 2011 is randomly selected.

What is the probability that the baby was born in February?

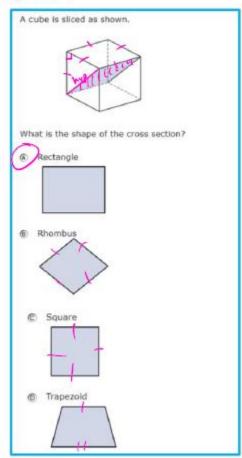
299 3966

Question 15 (20(8)

A total of 50 students play either soccer or lacrosse.

- 20 girls play lacrosse.
- 20 boys play either soccer or lacrosse.
- · 20 students play soccer.

What is the probability that a student plays soccer or is a girl?


	Soccer	lacrosse	fotal	
Bais	10	(0	20	
Gals	(0)	20 (30	
total	(20)	30	50)	

$$p_{mb}(S \text{ or } G) = p(s) + p(G) - p(S \text{ nG})$$

$$= \frac{20}{50} + \frac{30}{50} - \frac{10}{50}$$

$$= \frac{40}{50}$$

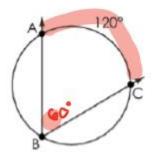
Question 16 (2018)

Question 18

(2018)

Events A and B are independent.

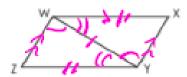
$$P(A \text{ and } B) = 0.25$$


Enter possible probabilities for events A and B.

$$P(A) = \bigcirc 5$$

$$P(B) = \bigcirc 5$$

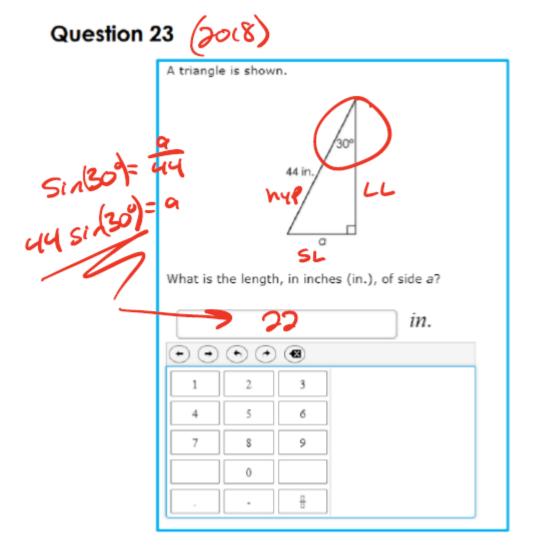
Angle ABC is inscribed in a circle as shown.


What is the measure, in degrees, of ∠ABC?

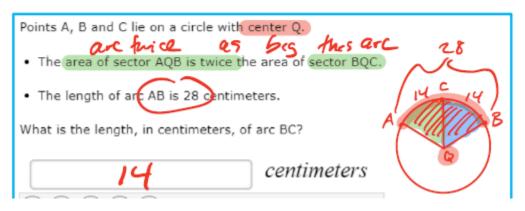
degrees

Question 21 (2008)

A parallelogram and incomplete proof are shown.



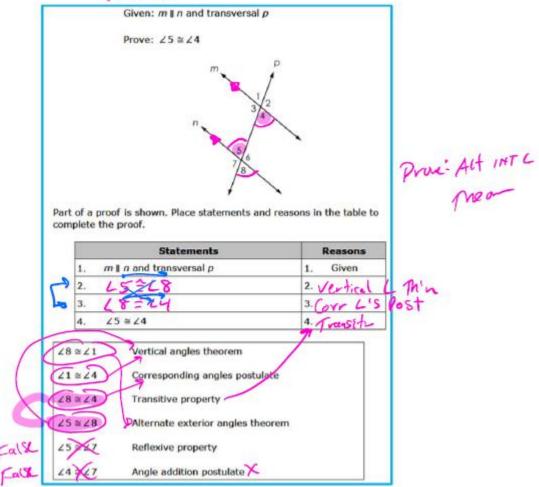
Given: WXYZ is a parallelogram.


Prove: WX≅YZ

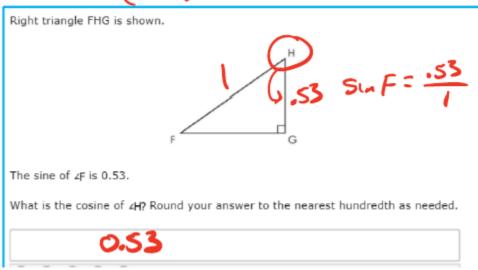
Place reasons in the table to complete the proof.

Statements	Reasons
WXYZ is a parallelogram.	1. Given
2. WX YZ WZ XY	2. Definition of a parallelogram
3. 4ZWY = 4XYW 4ZYW = 4XWY	"Alt IH Lare =
4. WY≡WY 4	· Reflexive prop
5. ∆WYZ≅∆YWX	5. A5A '
6. WX = YZ	CPCTC -
Corresponding angles are congruent.	SSS Transitive property
Alternate exterior angles are congruent	SAS Reflexive property
Alternate interior angles are congruent.	ASA Angle addition postulate
Corresponding parts of congruent triangles are congruent	AA Corresponding parts of congruent triangles are signal.

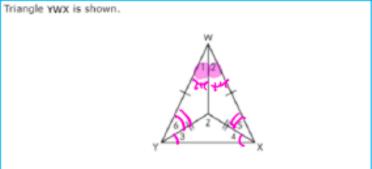
Question 29 (2018)


Question 31 (2008)

Which term is defined as two intersecting lines that form four right angles in a plane?
skew lines straight lines parallel lines
perpendicular lines


Question 34 (20(8)

A cone and a sp	here have the sa	me volume. The he	ight of the cone is 96 units.)
What could be t	he values for the	radius of the cone :	and the sphere? Round your answers to the nearest hundredth
as needed.	TO THE		and the spinet. Reduce your distribution of the second state of th
			W - W
Radius of C	Cone:		units in the second with the s
D = 1: C (C-1	-	4 2 3 - + m P2 h
Radius of S	Spnere:	2.88	units 3 no = 3 me h
\odot	•) 🔞		21
1	2	3	3 4mr>= tor R (96)
4	5	6	37
			the strength
7	8	9	, ,,
	0		4r3=R2.96
		<u>n</u>	
			1 3-112 A
			453= (1)696
			423= 96
			47
			~³= 24
			3
			4= 25A
			~≈ 2.88
			1 2 2 2



Question 40 (2008)

Question 44 (2018)

Given: WY≃WX, ZY≃ZX

Prove: WZ bisects ZYWX

Place statements and reasons in the blank boxes to complete the proof.

Statements	Reasons
WY≃WX ZY≈ZX	Given
.∠WYX≡∠WXY ∠3≡44	Ball angles of A are ?
m-WYX m-WXY m-3=m-4	Measures of congruent angles are equal.
m-WYX = m-6+ m-3 m-WXY = m-5+ m-4	L+ Post
m46+m43 = m45+m44	Substitution
mc6+mc5=mc5	
m=6=m=5	Add's Pm =
DWA550WX	t SAS
∠YWZ≅∠XWZ	A CROTO
WZ bisects ∠YWX	/ Ded'n L buscoton
	l / V
m=6+m=3=m=5+m=3	∆WYZ≋∆WXZ Addition Property of Equality
m46= m45+ m44 - m43	∆WYX≋∆ZYX Substitution
m46+m43=m43+m44	Corresponding Angle Addition parts of congruent Postulate triangles are congruent
Base angles of isosceles triangles are congruent.	Definition of angle Reflexive Property bisector
Corresponding part	s of similar triangles are congruent.

1 pt 2 pt

Question 45 (2018)

The equation of a l	ine is shown.	W=2	30
6x - 3y = 5	-by = -6x +5		3
A dilation centered	at the origin with a scale	factor of 6 is applied to this line.	CO
	e of the y-intercept of the	e line after the dilation? Y-int-SF	
A. 🛜		43	
B. ~0	-	³⁶ /3	

Question 47 (၁೦١৪)

Triangle MNO is transformed to produce triangle PQR.
Select all of the transformations that would guarantee triangles MNO and PQR are congruent.
a dilation, then a translation a reflection, then a dilation
a reflection, then a rotation
✓ a rotation, then a translation
a translation, then a reflection

Question 48

Rosa collects data on what students at her school like to eat at the movie theater. She asks a random sample of 120 students two questions:

- · Do you like to eat popcorn at the movie theater?
- · Do you like to eat candy at the movie theater?

Her data are partially shown in the table. Of the students she asks 60% of those who like to eat popcorn also like to eat candy.

Complete the table to show the number of students in each category.

	Like Popcorn	Don't Like Popcorn	Total
Like Candy	42	F 16 7	58
Don't Like Candy	+ 28 1	± <u>34</u> ‡	← 62
Total	70	50	120

_	4 \	1 = 4	. ^
1 -		- /	/ r \
, 00			(, 04