\qquad
V7 - Find Resultant Vectors (More difficult problems)
Assume all angles are given in standard position.

1. George throws a headless doll 100 feet at an angle of 45°. Upon landing, George throws the doll again at 225° for 50 feet. What is the resulting vector in polar coordinates?

$$
\begin{array}{ll}
\vec{a}=\left(100,45^{\circ}\right) & \vec{b}=\left(50,225^{\circ}\right) \\
\vec{a}=\langle 70.71,20.71\rangle & \vec{b}=(-35.36,-35.30) \\
\frac{|100\rangle, \sqrt{100} \sqrt{2}}{\mid 20.71}=70.71 & \frac{\frac{5}{\sqrt{2}}=-35.36}{13}
\end{array}
$$

$$
\begin{aligned}
& \vec{R}=\langle 20.71-35.36,20.21-35.36\rangle \\
& \vec{R}=\langle 35.35,35.35\rangle
\end{aligned}
$$

$$
\theta=\tan ^{-1}\left(\frac{35.35}{35.35}\right)
$$

$$
\theta=45^{\circ}
$$

$$
\| \vec{R}| |=\sqrt{(35.35)^{2}+(35.35)^{2}}
$$

$$
\|\vec{R}\| \simeq 49.99
$$

$$
\vec{R}=\left(49.99,45^{\circ}\right)
$$

2. George throws a dolless head 25 feet at an angle of 140°. After running and picking it up, he throws the head again 30 feet at an angle of 200°. What is the resulting vector in polar coordinates?

$x=r \cos \theta \quad y=r \sin \theta$
$x=25 \cos \left(140^{\circ}\right)$
$x=-19.15 \quad y=16.07$
$\stackrel{\rightharpoonup}{v}=\langle-19.15,16.07\rangle$

$\vec{w}=\langle r \cos \theta, r \sin \theta\rangle$
$=\langle 30 \cos (200), 30 \sin (200)\rangle$
$\vec{\omega}=\langle-28.19,-10.26\rangle$

$$
\begin{aligned}
\vec{R}= & \langle-19.15,16.07\rangle \\
& +\langle-28.19,-10.26\rangle \\
\vec{R}= & \langle-47.41,-26.33\rangle
\end{aligned}
$$

$$
\vec{R}=\left(54.23,207.17^{\circ}\right)\left\{\begin{array}{l}
\text { NAG } \theta \\
\|\vec{R}\|=\sqrt{(-47.41)^{2}+(-26.33)^{2}} \\
\|\vec{R}\|=54.23 \\
\theta^{\prime}=k_{n}^{-1}\left(\frac{26.33}{47.41}\right) \\
\theta^{\prime}=27.17^{\circ}
\end{array}\right.
$$

θ

$$
\begin{aligned}
& =180^{\circ}+27.17 \\
& =207.17^{\circ}
\end{aligned}
$$

