\qquad

Triangles

Hw Section 4.1
Draw the following. Mark the picture!!!

1. Obtuse Isosceles Triangle	2. Acute Equilateral Triangle	3. Right Scalene Triangle

Find \boldsymbol{x}.

Mark the angles and sides of each pair of triangles to indicate that they are congruent.

11. $\triangle C B D \cong \triangle J K L$

12. $\triangle W X Y \cong \triangle D C Y$

Write a statement indicating that the triangle pair is congruent. ORDER IS IMPORTANT!!!

13.

14.

15.

\qquad

Watch the application walk through video if you need extra help getting started!

In order to prove that two triangles are congruent, you must show that every corresponding angle and every corresponding side is congruent.
3. Mark the picture and then prove it. Show ALL SIDES and ALL ANGLES $\cong!!!$

Given: $\overline{\boldsymbol{G I} \\|} \overline{\boldsymbol{T R}}$ H is the midpoint of $\overline{G T}$ $\begin{aligned} & \overline{G I} \cong \overline{R T} \\ & \overline{H R} \cong \overline{I H} \end{aligned}$ Prove: $\triangle G H I \cong \Delta T H R$	
STATEMENTS	REASONS
1. $\overline{G I} \\| \overline{T R}$ H is the midpoint of $\overline{G T}$ $\begin{aligned} & \overline{G I} \cong \overline{R T} \\ & \overline{H R} \cong \overline{I H} \end{aligned}$	1.
2. $\overline{G H} \cong \overline{H T}$	2.
3. $\angle G \cong \angle T$	3. Alternate Interior Angles are congruent
4. $\angle I \cong \angle R$	4.
5.	5.
6. $\triangle G H I \cong \triangle T H R$	6. Definition of Congruent Triangles

4. Mark the picture and then prove it. Show ALL SIDES and ALL ANGLES $\cong!!!$

Given: $\Delta V X W$ is an isosceles triangle with base $\overline{V W}$ $\overline{X P}$ is an angle bisector of $\angle V X W$ P is the midpoint of $\overline{V W}$ $\angle V P X \cong \angle W P X$ Prove: $\triangle P V X \cong \triangle P W X$		
STATEMENTS	REASONS	
$\begin{aligned} & \triangle V X W \text { is an isosceles triangle } \\ & \overline{X P} \text { is an angle bisector or } \angle V X W \\ & P \text { is the midpoint of } \overline{V W} \\ & \angle V P X \cong \angle W P X \end{aligned}$	1.	
2. $\overline{X P} \cong \overline{X P}$	2.	
3. $\overline{V X} \cong \overline{X W}$	3.	
4.	4.	
5. $\angle V X P \cong \angle W X P$	5.	
6. $\angle X V P \cong \triangle X W P$	6.	
7. $\triangle P V X \cong \triangle P W X$	7.	

5. Fill in the measure of every angle:

GIVEN:

$$
\begin{aligned}
& m \angle \mathrm{KAB}=148^{\circ} \\
& m \angle \mathrm{EOF}=45^{\circ} \\
& m \angle \mathrm{DEF}=65^{\circ} \\
& m \angle \mathrm{ODE}=145^{\circ} \\
& m \angle \mathrm{JFH}=122^{\circ}
\end{aligned}
$$

Name any isosceles triangles.

\qquad

SSS and SAS

State if the two triangles are congruent. If they are, state why.
1.

2.
3.

Hw Section 4.2
4.

5.

6.

7.

8.

9.

10.

11.

12.

ALGEBRA REVIEW			
$\begin{gathered} \text { SOLVE } \\ 5-2(3 x-4)=-7 \end{gathered}$	$y=-x$		$\begin{gathered} \text { MULTIPLY } \\ (5 x-3)(2 x+3) \end{gathered}$
$\begin{aligned} & \text { SOLVE } \\ & \frac{2 x-1}{6}=\frac{x}{4} \end{aligned}$	$y=\frac{2}{3} x$		$\begin{gathered} \text { FACTOR } \\ x^{2}-10 x-24 \end{gathered}$

Mark the picture. Answer the question. Prove it.
13.

Given: $\angle T W X \cong \angle V W X$
$\overline{T W} \cong \overline{W V}$

Prove: $\triangle X W V \cong \triangle X W T$

WHY ARE THE TWO TRIANGLES CONGRUENT?

\qquad

STATEMENTS	REASONS

Mark the picture. Answer the question. Prove it.
14.

Given: $\overline{S T} \cong \overline{S J}$
$\overline{J R} \cong \overline{T R}$
Prove: $\Delta R S T \cong \triangle R S J$

WHY ARE THE TWO TRIANGLES CONGRUENT?

STATEMENTS	REASONS

1. Mark the picture, state why the two triangles are congruent, then prove it!

Given:	$\angle S R T \cong \angle H R F$
	\boldsymbol{R} is the midpoint of $\overline{T F}$
Prove: $\Delta T S R \cong \overline{\boldsymbol{S R}} \cong \overline{\boldsymbol{H R}}$	
STATEMENTS	

2. Mark the picture, state why the two triangles are congruent, then prove it!

Given: $\overline{A B} \cong \overline{D C}$
$\angle A B C$ and $\angle D C B$ are right angles
Prove: $\triangle A B C \cong \triangle D C B$
STATEMENTS

Mark the picture. Answer the question. Prove it.
16.

Given: R is the midpoint of $\overline{S I}$

$$
\overline{H I} \| \overline{S Q}
$$

Prove: $\triangle R Q S \cong \triangle R H I$

WHY ARE THE TWO TRIANGLES CONGRUENT? \qquad

STATEMENTS	REASONS

Mark the picture. Answer the question. Prove it.
17.

Given: $\overline{G E}$ is the angle bisector of $\angle L E F$

$$
\angle \boldsymbol{L} \cong \angle \boldsymbol{F}
$$

Prove: $\triangle L E G \cong \triangle F E G$

WHY ARE THE TWO TRIANGLES CONGRUENT? \qquad

STATEMENTS	REASONS

1. Mark the picture, state why the two triangles are congruent, then prove it!

Given: $\angle H G I \cong \angle C I D$ $\angle C D I$ is a right angle
$\overline{H I}$ is the perpendicular bisector of $\overline{G D}$
Prove: $\triangle H G I \cong \triangle C I D$

STATEMENTS	REASONS

2. Mark the picture, state why the two triangles are congruent, then prove it!

| Given: $\angle M \cong \angle H$ |
| :--- | :--- |
| $\angle M A T \cong \angle H T A$ |

ALGEBRA REVIEW			
$\begin{gathered} \text { SOLVE } \\ 26=-7+3 x-3(2 x-4) \end{gathered}$	$y=-\frac{x}{2}$		$\begin{gathered} \text { MULTIPLY } \\ (2 x-3)(3 x+4) \end{gathered}$
$\begin{gathered} \text { SOLVE } \\ \frac{2 x-1}{6}=\frac{x+2}{4} \end{gathered}$	$y=x$		$\begin{gathered} \text { FACTOR } \\ x^{2}-12 x+36 \end{gathered}$

State if the two triangles are congruent. If they are, state why.

Mark the picture. Answer the question. Prove it.
7.

Given: R is the midpoint of $\overline{S I}$

$$
\angle S \cong \angle I
$$

Prove: $\angle Q \cong \angle H$

WHY ARE THE TWO TRIANGLES CONGRUENT?

\qquad

STATEMENTS	REASONS

Mark the picture. Answer the question. Prove it.
8.

Given: $\overline{G E}$ is the angle bisector of $\angle L E F$
$\overline{L E} \cong \overline{F E}$
Prove: $\overline{\boldsymbol{L G}} \cong \overline{\boldsymbol{F G}}$

WHY ARE THE TWO TRIANGLES CONGRUENT? \qquad

STATEMENTS	REASONS

9.

Given: $\angle A$ and $\angle T$ are right angles $\overline{M A} \cong \overline{T H}$

Prove: $\angle M H A \cong \angle H M T$

WHY ARE THE TWO TRIANGLES CONGRUENT? \qquad
STATEMENTS
REASONS

1. Mark the picture, state why the two triangles are congruent, then prove it!

Given: $\angle G K E$ is isosceles with base $\overline{G E}$,	
	$\angle L$ and $\angle D$ are right angles, and
Prove: $\overline{L G} \cong \overline{D E}$	

2. Mark the picture, state why the two triangles are congruent, then prove it!

| Given: $\overline{\overline{L O}} \overline{\text { bisects }} \frac{\angle M L N,}{\overline{O M} \perp \overline{L M}, \overline{O N} \perp \overline{L N}}$ |
| :--- | :--- |
| Prove: $\triangle L M O \cong \triangle L N O$ |

Fill in all of the missing angles to help you find x.

Use the picture to find the following:
9. If $m \angle L=58$, then $m \angle L K J=$?
10. If $J=5$, then $M L=$?
11. If $m \angle J K M=48$, then $m \angle J=$? .
12. If $m \angle J=55$, then $m \angle J K M=$?

Algebra Find the values of m and n.
13.

14.

15.

\qquad

Triangle Congruence

For each proof, mark the picture and complete the proof. \#1)

Given: $\overline{G I} \\| \overline{T R}$ H is the midpoint of $\overline{G T}$ $\begin{aligned} & \overline{G I} \cong \overline{R T} \\ & \overline{H R} \cong \overline{I H} \end{aligned}$ Prove: $\Delta G H I \cong \triangle T H R$	
STATEMENTS	REASONS
1. $\overline{G I} \\| \overline{T R}$ H is the midpoint of $\overline{G T}$ $\begin{aligned} & \overline{G I} \cong \overline{R T} \\ & \overline{H R} \cong \overline{I H} \end{aligned}$	1.
2. $\overline{G H} \cong \overline{H T}$	2.
3. $\angle G \cong \angle T$	3. Alternate Interior Angles: Theorem
4. $\angle I \cong \angle R$	4.
5.	5.
6. $\triangle G H I \cong \triangle T H R$	6. Definition of Congruent Triangles

\#2)
Given: $\angle T W X \cong \angle V W X$ $\overline{T W} \cong \overline{W V}$

Prove: $\triangle X W V \cong \triangle X W T$

STATEMENTS	

\#3)
Given: R is the midpoint of $\overline{S I}$
$\overline{H I} \| \overline{S Q}$

Prove: $\triangle R Q S \cong \triangle R H I$

\#4)
Given: $\angle S R T \cong \angle H R F$
R is the midpoint of $\overline{T F}$ $\overline{S R} \cong \overline{H R}$

Prove: $\Delta T S R \cong \Delta F R H$

STATEMENTS
REASONS
\#5)
Given: $\angle H G I \cong \angle C I D$
$\angle C D I$ is a right angle
$\overline{H I}$ is the perpendicular bisector of $\overline{G D}$
Prove: $\Delta H G I \cong \triangle C I D$

STATEMENTS	

\#6)
Given: R is the midpoint of $\overline{S I}$ $\angle S \cong \angle I$

Prove: $\angle Q \cong \angle H$

STATEMENTS	REASONS

\#7)
Given: $\angle \bar{A}$ and $\angle T$ are right angles
Prove: $\angle M H A \cong \overline{T H} \cong$

STATEMENTS	REASONS

\#8) Given: $\overline{L O}$ bisects $\angle M L N$
$\overline{O M} \perp \overline{L M}, \overline{O N} \perp \overline{L N}$
Prove: $\quad \triangle L M O \cong \triangle L N O$

Classify each triangle by its sides and angles.

\#10)

10

Find the value of x.
\#11)

\#12)

\#13)

State if the two triangles are congruent. If they are, state how you know.

Find the value of x.
\#26)

\#27)

Finish the congruence statement.
\#28)
$\Delta E F G \cong$ \qquad
\#29)

$\Delta S T U \cong$ \qquad

Triangle Congruence

Classify each triangle by its sides (scalene, isosceles, or equilateral) as well as by its angles (acute, obtuse, or right).
1)

2)

Find the value of x.
3)

4)

7)

\#8) What is the definition of an isosceles triangle?
\#9) What is the converse to the isosceles triangle theorem?

Mark the angles and sides of each pair of triangles to indicate that they are congruent.
10) $\triangle W X V \cong \triangle W R Q$

11) $\triangle A B C \cong \triangle A Y X$

Complete each congruence statement by naming the corresponding angle or side.
12) $\triangle F G H \cong \triangle J K L$
$\angle H \cong$?
13) $\triangle D F E \cong \triangle X Y Z$

$$
\overline{E D} \cong ?
$$

State if the two triangles are congruent. If they are, state how you know.

For each proof, mark the picture and complete the proof.
\#23)
Given: $\frac{\Delta V X W \text { is an isosceles triangle with base } \overline{V W}}{X P}$ is an angle bisector of $\angle V X W$ $\overline{X P}$ is an angle bisector of $\angle V X W$ P is the midpoint of $\overline{V W}$
$\angle V P X \cong \angle W P X$
Prove: $\triangle P V X \cong \triangle P W X$

STATEMENTS	REASONS
1. $\triangle V X W$ is an isosceles triangle $X P$ is an angle bisector of $\angle V X W$ P is the midpoint of $\overline{V W}$ $\angle V P X \cong \angle W P X$	1.
2. $\overline{X P} \cong \overline{X P}$	2.
3. $\overline{V X} \cong \overline{X W}$	3.
4.	4.
5. $\angle V X P \cong \angle W X P$	5.
6. $\angle X V P \cong \angle X W P$	6.
7. $\triangle P V X \cong \triangle P W X$	7.

\#24)
Given: $\overline{\overline{S T}} \cong \overline{S J}$

$$
\overline{J R} \cong \overline{T R}
$$

Prove: $\Delta R S T \cong \Delta R S J$

Given: $\overline{G E}$ is the angle bisector of $\angle L E F$
$\angle L \cong \angle F$
Prove: $\triangle L E G \cong \triangle F E G$

STATEMENTS	REASONS

\#26)
Given: $\overline{A B} \cong \overline{D C}$
$\angle A B C$ and $\angle D C B$ are right angles
Prove: $\triangle A B C \cong \triangle D C B$

REASONS
\#27)
Given: $\angle M \cong \angle H$ $\angle M A T \cong \angle H T A$

Prove: $\triangle M A T \cong \triangle H T A$

STATEMENTS	REASONS

\#28)
Given: $\overline{G E}$ is the angle bisector of $\angle L E F$ $\overline{L E} \cong \overline{F E}$

Prove: $\overline{L G} \cong \overline{F G}$

Given: $\triangle G K E$ is isosceles with base $\overline{G E}$, $\angle L$ and $\angle D$ are right angles, and K is the midpoint of $\overline{L D}$.
Prove: $\overline{L G} \simeq \overline{D E}$

STATEMENTS	

\#30) Prove the isosceles triangle theorem.

Given: Triangle $A B C$ is isosceles. Point D is the midpoint of $\overline{A C}$.

Prove: $\angle \mathrm{BAC} \cong \angle \mathrm{BCA}$

Bisectors, Medians and Altitudes
\#1) Find $A B$ if $\overline{B D}$ is a median of $\triangle A B C$.

\#2) Find $A C$ if $\overline{B D}$ is an altitude of $\triangle A B C$.

\#3) Find $m \angle A B C$ if $\overline{B D}$ is an angle bisector of $\triangle A B C$.

Hw Section 5.1
\#4) Find $A C$ if $\overline{B D}$ is an altitude of $\triangle A B C$.

Draw and label a figure for each statement.
\#5) Isosceles triangle $A B C$, with vertex angle A , where $\overline{A D}$ is an altitude, median, and angle bisector.
\#6) $\triangle D E F$ is a right triangle with right angle at $\mathrm{F} . \overline{F G}$ is a median of $\triangle D E F$ and $\overline{G H}$ is the perpendicular bisector of $\overline{D E}$.
\#7) Three medians of a triangle intersecting in the interior of the triangle.
\#8) Altitude $\overline{F A}$ on the exterior of $\triangle E F G$.

Answer each question if $A(1,6), B(13,2)$, and $C(-7,12)$ are the vertices of $\triangle A B C$

\#9) What are the coordinates of the midpoint of $\overline{A B}$?
\#10) What is the slope of the perpendicular bisector of $\overline{A B}$?
\#11) Points S, T, and U are the midpoints of $\overline{D E}, \overline{E F}$, and $\overline{D F}$, respectively. Find x, y, and z .

\#1) 20
\#2) 87
\#3) 100
\#4) 91
\#5) - \#8) See key
\#9) $(7,4)$
\#10) 3
\#11) $\left(-\frac{3}{5}, 9, \frac{16}{3}\right)$
\qquad

End of Course Test Questions

The key to this section is on smacmathgeometry.weebly.com under "Air Test"

Question 44

Triangle YWX is shown.

Given: $W Y \cong W X, Z Y \equiv Z X$

Prove: WZ bisects CYWX
Place statements and reasons in the blank boxes to complete the proof.

Statements	Reasons
$\begin{aligned} & \mathrm{WY} \cong W \mathrm{~W} \\ & \mathrm{ZY} \cong Z \mathrm{ZX} \end{aligned}$	Given
$\begin{aligned} & \angle W Y X \cong \angle W X Y \\ & \angle 3 \cong \angle 4 \end{aligned}$	
$\begin{aligned} & m \angle W Y X=m \angle W X Y \\ & m \angle 3=m \angle 4 \end{aligned}$	Measures of congruent angles are equal.
$\begin{aligned} & m \angle W Y X=m \angle 6+m \angle 3 \\ & m \angle W X Y=m \angle 5+m \angle 4 \end{aligned}$	
$m \angle 6+m \angle 3=m \angle 5+m \angle 4$	Substitution
	Substitution
$\mathrm{m} \angle 6=\mathrm{m} \angle 5$	
	SAS
$\angle \mathrm{YWW} \cong \angle \mathrm{XWZ}$	
WZ bisects $\angle \mathrm{YWX}$	

$m \angle 6+m \angle 3=m \angle 5+m \angle 3$	$\Delta W Y Z \approx \Delta W X Z$	Addition Property of Equality
$m \angle 6=m \angle 5+m \angle 4-m \angle 3$	$\Delta W Y X \approx \Delta Z Y X$	Substitution
$m \angle 6+m \angle 3=m \angle 3+m \angle 4$	Corresponding parts of congruent triangles are congruent.	Angle Addition Postulate
Base angles of isosceles triangles are congruent.	Definition of angle bisector	Reflexive Property
Corresponding parts of similar triangles are congruent.		

\#1) Find $A B$ if $\overline{B D}$ is a median of $\triangle A B C$.

\#2) Find $A C$ if $\overline{B D}$ is an altitude of $\triangle A B C$.

\#3) Find $\mathrm{m} \angle \mathrm{ABC}$ if $\overline{B D}$ is an angle bisector of $\triangle A B C$.

State whether each sentence is always, sometimes, or never true.
\#5) A median is an angle bisector.
\#6) A median is an altitude.
\#7) In an equilateral triangle, a median is also an angle bisector and is also an altitude.
\#8) An altitude is on the exterior of a triangle.
\qquad

Answer each question if $A(5,10), B(12,-1)$, and $C(-6,8)$ are the vertices of $\triangle A B C$

\#9) What are the coordinates of K if $\overline{C K}$ is a median of $\triangle A B C$?
\#10) What is the slope of the perpendicular bisector of $\overline{A B}$? What is the slope of $\overline{C L}$ if $\overline{C L}$ is the altitude from point C ?
\#11) Points S, T, and U are the midpoints of $\overline{D E}, \overline{E F}$, and $\overline{D F}$, respectively. Find x, y, and z .

\#1) 13
\#2) 96
\#3) 30°
\#4) 236
\#5) Sometimes
\#6) Sometimes
\#7) Always
\#8) Sometimes
\#9) $\left(\frac{17}{2}, \frac{9}{2}\right)$
\#10) $\frac{7}{11}, \frac{7}{11}$
\#11) $\mathrm{x}=6, \mathrm{y}=2.9, \mathrm{z}=1.2$

Solving Systems of Equations

Solve each system of equations by substitution or elimination. If the system does not have exactly one solution, state whether it has no solution or infinitely many solutions.
\#1) $x=3$
$2 y+x=3$
\#2)
$y=2$
$2 x-4 y=1$
\#3) $y=2 x-7$
$3 x-y=7$

Hw Section 6.1
\#4)

$$
\begin{aligned}
& -4 x-2 y=-12 \\
& 4 x+8 y=-24
\end{aligned}
$$

\#5) $\quad-2 x-9 y=-25$
$-4 x-9 y=-23$
\#6)
$x=2 y$
$.25 x+.5 y=10$

$$
\text { \#7) } \begin{aligned}
& 3 x+2 y=0 \\
& x-5 y=17
\end{aligned}
$$

\#8) $\quad 2 x+3 y=6$
$x+2 y=5$
\#9) $3 x-y=2$
$x+2 y=3$

$$
\text { \#10) } \quad \begin{aligned}
& 4 x+5 y=6 \\
& 6 x-7 y=-20
\end{aligned}
$$

```
#11) }\textrm{y}=4\textrm{4
```

 \(x+y=5\)
 \#12) $x=-4 y$
$3 x+2 y=20$
\qquad
\#13) $\begin{aligned} & y=x-1 \\ & x+y=3\end{aligned}$
\#14) $3 x-y=4$
$2 x-3 y=-9$
\#15) $x+5 y=4$
$3 x+15 y=-1$

$$
\text { \#16) } \begin{aligned}
& x-5 y=10 \\
& 2 x-10 y=20
\end{aligned}
$$

$$
\text { \#17) } \begin{array}{ll}
& x+4 y=8 \\
& 2 x-5 y=29
\end{array}
$$

$$
\text { \#18) } \quad \begin{aligned}
& 4 x+y=0 \\
& x+2 y=-7
\end{aligned}
$$

```
#19) 2x-3y=-24
    x+6y=18
```

Answers
\#1) $(3,0)$
\#2) $\left(\frac{9}{2}, 2\right)$
\#3) $\quad(0,-7)$
\#4) $(6,-6)$
\#5) $(-1,3)$
\#6) $(20,10)$
\#7) $\quad(2,-3)$
\#8) $(-3,4)$
\#9) $(1,1)$
\#10) $(-1,2)$
\#11) $(1,4)$
\#12) $(8,-2)$
\#13) $(2,1)$
\#14) $(3,5)$
\#15) no solution
\#16) infinitely many solutions.
\#17) $(12,-1)$
\#18) $(1,-4)$
\#19) $(-6,4)$
\#20) $(14,5)$
\qquad

Parallelograms

Hw Section 6.2
EFGH is a parallelogram. Determine whether each statement must be true. If it must be true, then state the theorem or definition that justifies the statement.

F

\#1) $\quad \overline{F E} / / \overline{G H}$
\#2) $\quad \Delta \mathrm{FDE} \cong \triangle H D G$
\#3) $\quad \angle \mathrm{FGH} \cong \angle \mathrm{FEH}$
\#4) $\quad \overline{F D} \cong \overline{D G}$
\#5) $\quad \triangle \mathrm{FHE} \cong \triangle \mathrm{GHE}$
\#6) $D E=\frac{1}{2} E G$

If each quadrilateral is a parallelogram, find the value of x, y, and z.
\#7)

\#8)

\#9)

Is each quadrilateral a parallelogram? Justify your answer. \#10)

\#11)

\#12) Explain why it is impossible for the figure to be a parallelogram.

\#13) Given parallelogram PQRS with $\mathrm{m} \angle \mathrm{P}=\mathrm{y}$ and $\mathrm{m} \angle \mathrm{Q}=4 \mathrm{y}+20$, find measures of $\angle \mathrm{R}$ and $\angle \mathrm{S}$.
\#14) Given parallelogram $A B C D$ with $m \angle C=x+75$ and $m \angle D=3 x-199$, find the measures of each angle.
\#15) Find all the possible ordered pairs for the fourth vertex of a parallelogram with vertices at $J(1,1), U(3,4)$, and $N(7,1)$.
\#16) If NCTM is a parallelogram, $m \angle N=12 x+10 y+5$, $m \angle C=9 x$, and $m \angle T=6 x+15 y$, find $m \angle M$.
\#17) NCSM is a parallelogram with diagonals $\overline{N S}$ and $\overline{M C}$ that intersect at point P. If $N P=4 x+20, N S=13 x$, $P C=x+y$, and $P M=2 y-2$, find $C M$
\#1) True, Def'n of Parallelogram
\#2) True, Vertical Angles Theorem, diagonals of parallelogram bisect each other, and SAS Theorem.
\#3) True, opposite angles of a parallelogram are \cong
\#4) False
\#5) False
\#6) True, diagonals of a parallelogram bisect each other.
\#7) $(80,80,100)$
\#8) $(30,45,75)$
\#9) $(25,35,120)$
\#10) Yes. The opposite sides are parallel because of the converse to the corresponding angles postulate. Thus, JULY is a paralle logram by definition of a parallelogram.
\#11) No, because consecutive interior angles are not supplementary.
\#12) In a parallelogram, opposite sides are congruent. In this figure the opposite sides of 8 and 9 are not congruent.
\#13) $m \angle R=32, m \angle S=148$
\#14) $m \angle A=151, m \angle B=29, m \angle C=151, m \angle D=29$
\#15) $(9,4),(5,-2),(-3,4)$
\#16) 45
\#17) 36

End of Course Test Questions

Question 13

Two pairs of parallel lines intersect to form a parallelogram as shown.

Place statements and reasons in the table to complete the proof that the opposite angles of a parallelogram are congruent.

Statements		Reasons			
1.	$m \\| n$ $k \\| l$	1.	Given		
2.		2.			
3.		3.			
4.		4.			

$\angle 1 \cong \angle 2$
$\angle 1 \cong \angle 3$
$\angle 2 \cong \angle 3$
$\angle 1 \cong \angle 1$

Alternate exterior angles are congruent.
Alternate interior angles are congruent.
Transitive property of congruence
Opposite angles are congruent.
Corresponding angles are congruent.

Question 21

A parallelogram and incomplete proof are shown.

Given: $W X Y Z$ is a parallelogram.
Prove: $W X \cong Y Z$

Place reasons in the table to complete the proof.

Statements	Reasons		
1. $W X Y Z$ is a parallelogram.	1. Given		
2. $W X \\| Y Z$ $W Z \\| X Y$	2. Definition of a parallelogram		
3. $\angle Z W Y \cong \angle X Y W$ $\angle Z Y W \cong \angle X W Y$	3.		
4. $W Y \cong W Y$	4.		
5. $\triangle W Y Z \cong \triangle Y W X$	5.		
6. $W X \cong Y Z$	6.		

Corresponding angles are congruent.	SSS	Transitive property
Alternate exterior angles are congruent.	SAS	Reflexive property
Alternate interior angles are congruent.	ASA	Angle addition postulate
Corresponding parts of congruent triangles are congruent.	AA	Corresponding parts of congruent triangles are similar.

\qquad

Tests for Parallelograms

Hw Section 6.3
Use parallelogram ABCD and the given information to find each value.
\#1) $m \angle A B C=137$. Find $m \angle D A B$.

\#2) $A C=5 x-12$ and $A T=14$. Find x.

\#3) $A B=6, B C=9$ and $m \angle A B C=80$. Find CD.

\#4) $B C=4 x+7$ and $A D=8 x-5$. Find x.

\#5) $B T=3 x+1$ and $B D=4 x+8$. Find x.

\#6) $m \angle B C D=3 x+14$ and $m \angle A D C=x+10$. Find $m \angle A D C$.

What values must x and y have in order that the quadrilateral is a parallelogram?
\#11)

\#12)

Determine whether $A B C D$ is a parallelogram given each set of vertices.
\#13) $A(8,10), B(16,17), C(16,11), D(8,4)$
\#14) $A(8,6), B(6,0), C(4,2), D(7,3)$
\#1) 43
\#2) 8
\#3) 6
\#4) 3
\#5) 3
\#6) 49
\#7)

\#9) True
\#11) $(2,-3)$
\#12) $(1,4)$
\#13) Yes, because the diagonals have the same midpoint.
\#14) No, because the diagonals have different midpoints

Quadrilaterals

For \#1-4, Determine if each statement is true or false.
\#1) A quadrilateral is a parallelogram if it has both pairs of opposite angles congruent.
\#2) A quadrilateral is a parallelogram if it has one pair of opposite sides congruent.
\#3) A quadrilateral is a parallelogram if it has one pair of opposite sides parallel and the other pair of opposite sides congruent.
\#4) A quadrilateral can have 5 sides.

For \#5-8, Use parallelogram NAES.
\#5) If $N T=4 x+6$, and $T E=5 x+4$, find NE.

\#6) If NS = $5-3 y$, $S E=2 x+1, E A=y+1$, and $A N=x+5$, find the values of x and y.

\#7) If $\mathrm{m} \angle \mathrm{SNA}=5 \mathrm{c}+6$ and $\mathrm{m} \angle \mathrm{SEA}=7 \mathrm{c}-4$, find $\mathrm{m} \angle \mathrm{SNA}$.

Review 6.1-6.3
\#8) If $m \angle N S E=8 f+10$ and $m \angle S E A=4 f-10$, then find $\mathrm{m} \angle \mathrm{EAN}$.

Determine whether $A B C D$ is a parallelogram given each set of vertices. EXPLAIN your answer.
\#9) $A(2,5), B(3,-1), C(6,3), D(5,9)$
\#10) In quadrilateral GOAT, segment GA bisects segment OT at N , and segment GN is congruent to segment NA. Must GOAT be a parallelogram? Circle Yes or NO.

What values must x and y have in order for each quadrilateral to be a parallelogram?

The figure BADC is a parallelogram. Use this figure and the information given to solve each problem.
\#12) If $m \angle B C D=35$, find $m \angle B A D$.

\#13) If $A B=6 x-3$ and $C D=2 x+9$, find $A B$.

Find the ordered pair that satisfies the system of equations.
\#14) $3 x-y=2$
$x+2 y=3$
\#15) $2 x+3 y=6$
$x+2 y=5$

\#1) True	\#2) False	\#3) False
\#4) False	\#5) $\mathrm{NE}=28$	\#6) (4, 1)

\#7) $\mathrm{m} \angle \mathrm{SNA}=31$ \#8) $\mathrm{m} \angle \mathrm{EAN}=130$
\#9) Yes, because the diagonals bisect each other. (answers vary)
\#10) Yes
$\begin{array}{lll}\text { \#11) }(10,0) & \# 12) 35 & \# 13) 15 \\ \# 14)(1,1) & \# 15)(-3,4) & \end{array}$
\qquad

Rectangles

Use rectangle MATH and MNRS with the given information to solve each problem. \#1) $\mathrm{HP}=6$, find HA

M
A

H

\#2) $M H=8$, find $A T$.
M
A

\#3) $\mathrm{HP}=3 \mathrm{x}$ and $\mathrm{PT}=18$, find x.
M
A

\#4) $\mathrm{m} \angle 1=55$, find $\mathrm{m} \angle 2$.

\#5) $m \angle 3=110$, find $m \angle 4$.

Hw Section 6.4

\#7) If $S T=14.25$, find $M R$.

\#8) If $\mathrm{m} \angle \mathrm{MTN}=116$, find $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 4$.

Draw a counterexample to show that each statement below is false.
\#9) If a quadrilateral has congruent diagonals, then it is a rectangle.
\#10) If a quadrilateral has opposite sides congruent, then it is a rectangle.
\#11) If a quadrilateral has diagonals that bisect each other, then it is a rectangle.

Find the values of x and y in rectangle PQRS.
\#12) $\mathrm{PT}=3 x-y, S T=x+y, T Q=5$

13) $P S=y, Q R=x+7, P Q=y-2 x, S R=x+1$

\#14) $\mathrm{PT}=\mathrm{x}+\mathrm{y}, \mathrm{ST}=2 \mathrm{y}-7, \mathrm{PR}=-3 \mathrm{x}$

Determine whether $A B C D$ is a rectangle. Explain \#15) $A(12,2), B(12,8), C(-3,8), D(-3,2)$

\#15) Yes, opposite sides are parallel and consecutive sides are perpendicular.
\#16) No, opposite sides are not parallel.
\qquad

Use rhombus BEAC with BA $=26$ to determine whether each statement is true or false. Justify your answer.

\#1) $C E=26$
\#2) $\mathrm{HA}=13$
\#3) $\overline{B A} \perp \overline{E C}$
\#4) $\triangle \mathrm{BHE} \cong \triangle \mathrm{AHC}$
\#5) $m \angle B E H=m \angle E B H$
\#6) $\angle \mathrm{CBE}$ and $\angle \mathrm{BCA}$ are supplementary

Circle all the quadrilaterals - parallelogram, rectangle, rhombus, or square - that have each property. \#7) All angles are congruent.
parallelogram, rectangle, rhombus, or square
\#8) The opposite sides are parallel.
parallelogram, rectangle, rhombus, or square
\#9) All sides are congruent.
parallelogram, rectangle, rhombus, or square
\#10) The opposite sides are congruent.
parallelogram, rectangle, rhombus, or square
\#11) It is equiangular and equilateral.
parallelogram, rectangle, rhombus, or square
Use rhombus IJKL and the given information to solve each problem.
\#12) If $m \angle 3=62$, find $m \angle 1, m \angle 4$, and $m \angle 6$.
।

\#13) If $\mathrm{m} \angle 3=2 x+30$ and $\mathrm{m} \angle 4=3 \mathrm{x}-1$, find x .

\#14) If $m \angle 3=4(x+1)$ and $m \angle 5=2(x+1)$, find x.
।

\#15) If $W X Y Z$ is a square, find $m \angle Z X Y$.
\#16) $P Q M N$ is a parallelogram. If $P N=7 x-10$ and $P Q=5 x+6$, for what value of x is $P Q M N$ a rhombus?
\#17) $A B X Y$ is a parallelogram. If $A B=5 x+24$ and $B X=x^{2}$, for what values of x is $A B X Y$ a rhombus?

Determine whether EFGH is a parallelogram, rectangle, rhombus, or square. List all that apply.
\#18) $E(0,1), F(2,0), G(4,4), H(2,5)$
\#19) $\mathrm{E}(2,-3), F(-3,1), G(1,6), H(6,2)$
\#1) False, the diagonals of a rhombus are not congruent unless it is a square.
\#2) True, the diagonals of a parallelogram bisect each other.
\#3) True, the diagonals of a rhombus are perpendicular.
\#4) True, since the diagonals of a parallelogram bisect each other, and all four sides of a rhombus are congruent, the triangles are congruent by SSS.
\#5) False, the consecutive angles of a rhombus are not congruent unless it is also a square.
\#6) True, the consecutive angles in a parallelogram are supplementary.
\#7) Rectangle, Square
\#8) Parallelogram, Rectangle, Rhombus, Square
\#9) Rhombus, Square
\#10) Parallelogram, Rectangle, Rhombus, Square

\#11) Square \quad| \#12) $\mathrm{m} \angle 1=28, \mathrm{~m} \angle 4=62, \mathrm{~m} \angle 6=90$ |
| :--- | :--- | :--- |
| \#13) $31 \quad \# 14) 14 \quad$ \#15) $45 \quad$ \#16) $8 \quad \# 17)-3$ and 8 |

\#18) Parallelogram, Rectangle
\#19) Parallelogram, Rectangle, Rhombus,
Square

Trapezoids

Hw Section 6.6
If possible, draw a trapezoid that has the following characteristics. If the trapezoid cant be drawn, explain why.
\#1) 3 congruent sides
\#2) congruent bases
\#3) a leg longer than both bases
\#4) bisecting diagonals
\#5) two right angles
\#6) four acute angles
\#7) one pair of opposite angles congruent

PQRS is an isoscelees trapezoid with bases $\overline{P S}$ and $\overline{Q R}$. Use the figure and the given information to solve each problem.
\#8) If $P S=20$ and $Q R=14$, find TV.

S
\#9) If $Q R=14.3$ and $T V=23.2$, find $P S$.
P

\#10) If TV $=x+7$ and $P S+Q R=5 x+2$, find x.

s
\#11) If $m \angle R V T=57$, find $m \angle Q T V$.

s
\#12) If $m \angle V T P=x$, find $m \angle T P S$ in terms of x.

s
\#13) If the measure of the median of an isosceles trapezoid is 4.5, what are the possible integral measures for the bases?
\#14) $\overline{U R}$ is the median of a trapezoid TSNO with bases $\overline{O N}$ and $\overline{T S}$. If the coordinates of the points are $U(1,3), R(8$, $3), O(0,0)$, and $N(8,0)$, find the coordinates of T and S.
\#1)

\#3)

\#5)

\#2) Cannot be drawn
\#4) Cannot be drawn: If the diagonals bisected, it would be a parallelogram.
\#6) Cannot be drawn: no quadrilateral has four acute angles.
\#7) Cannot be drawn: It would be a parallelogram.
\#8) 17 \#9) 32.1
\#10) 4 \#11) 57
\#12) $180-\mathrm{x} \# 13) \quad 1,8: 2,7 ; 3,6 ; 4,5$
\#14) $\quad T(2,6), S(8,6)$

End of Course Test Questions 2019
Question 12

A partially completed chart shows the hierarchy of a set of polygons.

Move a term to each blank box to complete the chart.
Kite Parallelogram Rectangle Rhombus Square

\qquad

Quadrilaterals

Chapter 6 Review 1

If each quadrilateral is a parallelogram, find the value of x, y, and z.
\#1)

\#2)

\#5) $T A=x, A C=12 x-22$

If each quadrilateral is a rectangle, find the value of x. \#4) $R A=6 x+7, T E=37$

\#3)

If the quadrilateral is a square, find the value of x and y. \#6) $S R=3 x-y, U Q=x+y, R U=5$

\#7) $m \angle R S A=11 x+y, m \angle A Q U=2 x+37 y$

R

\#8) If the quadrilateral is a rhombus, find the value of x and $y . m \angle R B M=3 x+3 y, m \angle R B H=x+4 y$

\#9) If the quadrilateral is a trapezoid, find the value of x.

\qquad
\#10) If the quadrilateral is a trapezoid, find the value of x.

\#11) If the quadrilateral is an isosceles trapezoid with median drawn, find the value of $\mathrm{w}, \mathrm{x}, \mathrm{y}$, and z .

\#12) Given parallelogram PQRS with $\mathrm{m} \angle \mathrm{P}=\mathrm{y}$ and $\mathrm{m} \angle \mathrm{Q}=4 \mathrm{y}+20$, find the measures of $\angle \mathrm{R}$ and $\angle \mathrm{S}$.

Diagram

Work

\#13) Given rhombus RHOM with RH $=2 x+2$ and $H O=5 x-11$, find $M R$.

Diagram

Work
\#14) If the measure of the median of an isosceles trapezoid is 6.5, what are the possible integral measures for the bases?

Diagram

Work
\#15) $\overline{U R}$ is the median of a trapezoid with bases $\overline{O N}$ and $\overline{T S}$. If the coordinates of the points are $\mathrm{U}(1,3), \mathrm{R}(6,3)$, $\mathrm{O}(0,0)$, and $\mathrm{N}(8,0)$, find the coordinates of T and S .

Diagram
\#16) Draw a tree diagram using square, parallelogram, rhombus, quadrilateral, rectangle, polygon, and trapezoid. Your tree should start with the most general term and then gradually get more specific. THIS QUESTION WAS ON THE 2019 END OF COURSE TEST.

Work

Determine whether EFGH is a parallelogram, rectangle, rhombus, or square. List all that apply. Organize your work in a logical manner.
\#17) $\quad E(0,1), F(2,0), G(4,4), H(2,5)$
\#18) $\quad E(2,-3), F(-3,1), G(1,6), H(6,3)$
\#19) What is the distance formula?
\#20) What is the slope formula?
\#21) What is the midpoint formula for the midpoint in a coordinate plane?
\#1) $x=30, y=30, z=30$
\#2) $x=40, y=35, z=105$
\#3) $x=40, y=110, z=30$
\#4) $x=\frac{23}{12}$
\#5) $x=2$
\#6) $\left(\frac{5}{2}, \frac{5}{2}\right)$
\#7) $(4,1)$
\#8) $(10,20)$
\#9) $x=11.5$
\#10) $x=15$
\#11) $w=50, x=130, y=50, z=50$
\#12) $m \angle R=32^{\circ}, m \angle S=148^{\circ}$
\#13) $M R=\frac{32}{3}$
\#14) 1,$12 ; \quad 2,11 ; \quad 3,10 ; \quad 4,9 ; \quad 5,8 ; \quad 6,7$
\#15) $\mathrm{T}(2,6), \mathrm{S}(4,6)$
\#16)

\#17) Parallelogram and a rectangle.
\#18) None
\#19), \#20), \#21) Use your notes. Don't be lazy.

Quadrilaterals

Chapter 6 Review 2

If each quadrilateral is a parallelogram, find the value of x, y, and z.
\#1)

\#2)

\#3)

\#5) $T A=x, R C=7 x-25$

If the quadrilateral is a square, find the value of x and y. \#6) $S R=2 x+2 y, U Q=x+2 y+3, R U=14$

\#7) $m \angle R S A=x+2 y, m \angle A Q U=2 x+y+9$

R

U

\#8) If the quadrilateral is a rhombus, find the value of x and y. $m \angle R B M=2 x+3 y, m \angle R B H=4 x+y+10$

\#9) If the quadrilateral is a trapezoid, find the value of x.

If each quadrilateral is a trapezoid, find the value of x. \#10)

If the quadrilateral is an isosceles trapezoid, find the value of w, x, y, and z.
\#11)

\#12) Given parallelogram PQRS with $\mathrm{m} \angle \mathrm{P}=16 \mathrm{y}$ and $\mathrm{m} \angle \mathrm{Q}=4 \mathrm{y}-20$, find the measures of $\angle \mathrm{R}$ and $\angle \mathrm{S}$.

Diagram

Work
\#13) Given rhombus RHOM with RH $=2 x+10$ and $H O=9 x-11$, find $M R$.

Diagram

Work
\#14) If the measure of the median of an isosceles trapezoid is 3.5 , what are the possible integral measures for the bases?

Diagram

Work
\#15) $\overline{U R}$ is the median of a trapezoid with bases $\overline{O N}$ and $\overline{T S}$. If the coordinates of the points are $\mathrm{U}(3,4), \mathrm{R}(9,4), \mathrm{O}(0$, $0)$, and $N(10,0)$, find the coordinates of T and S.

Diagram
\#16) Draw a tree diagram using square, parallelogram, rhombus, quadrilateral, rectangle, polygon, and trapezoid. Your tree should start with the most general term and then gradually get more specific. THIS QUESTION WAS ON THE 2019 END OF COURSE TEST.

Work

Determine whether EFGH is a parallelogram, rectangle, rhombus, or square. List all that apply. Organize your work in a logical manner.
\#17) $\quad E(6,5), F(2,3), G(-2,5), H(2,7)$
\#18) $E(2,-3), F(-3,1), G(1,6), H(6,2)$
\#19) What is the distance formula?
\#20) What is the slope formula?
\#21) What is the midpoint formula for the midpoint in a coordinate plane?
\qquad

Properties of Proportions

Hw Section 7.1

Gears on bicycles are called sprocket wheels. To determine gear ratios on bicycles, you must find the ratio of the number of rear sprocket teeth to the number of front sprocket teeth. Find each ratio. Express your answer as a decimal rounded to the nearest hundredth.
\#1) 12 rear sprocket teeth
24 front sprocket teeth
\#2) 15 rear sprocket teeth
55 front sprocket teeth
\#3) 13 rear sprocket teeth
52 front sprocket teeth
\#4) 20 rear sprocket teeth 30 front sprocket teeth

Solve each proportion. Do not round answers.
\#5) $\quad \frac{11}{24}=\frac{x}{24}$
\#6)

$$
\frac{5}{8}=\frac{20}{x}
$$

\#7)

$$
\frac{x}{3.24}=\frac{1}{8}
$$

$$
\frac{4}{x}=\frac{7}{8}
$$

\#9)

$$
\frac{x+3}{12}=\frac{5}{4}
$$

\#10)

$$
\frac{1}{3}=\frac{x}{8-x}
$$

$\overline{A D}$ is a median of $\triangle \mathrm{ABC}$. Use the picture below for \#11\#13.

\#11) Find the ratio of $B D$ to $D C$.
\#12) Find the ratio of $D C$ to $B C$.
\#13) If $\triangle A B C$ is an equilateral triangle, find the ratio of $\mathrm{m} \angle A B D$ to $\mathrm{m} \angle A D C$.

Proportions can be used to change a fraction to a percent. For example, to change $\frac{5}{6}$ to a percent, you divide 5 by 6 , then shift the decimal two places to the right. Change each fraction to a percent using long division. (No calculators.) Round final answer to the nearest tenth.
\#14) $\frac{3}{8}$
\#15) $\frac{5}{12}$
\#16) $\frac{13}{4}$
\#17) The ratio of the measures of two angles of an isosceles triangle is 1 to 2 . What are the possible measures of the angles of the triangle?
\#18) One way to determine the strength of a bank is to calculate its capital-to-assets ratio as a percent. A strong bank should have a ratio of 4% or more. The Pilgrim National Bank has a capital of 2.3 billion dollars and assets of 52.6 billion dollars. Is it a strong bank? Explain.
\#19) On a bike, the ratio of the number of rear sprocket teeth to the number of front sprocket teeth is equivalent to the number of rear sprocket wheel revolutions to the number of pedal revolutions. If there are 24 rear sprocket teeth and 54 front sprocket teeth, how many revolutions of the rear sprocket wheel will occur for 3 revolutions of the pedal? Round to the nearest tenth.

$\# 1)$	0.50	$\# 2)$	0.27	$\# 3)$	0.25
$\# 4)$	0.67	$\# 5)$	11	$\# 6)$	32
$\# 7)$	0.405	$\# 8)$	$\frac{32}{7}$	$\# 9)$	12
$\# 10)$	2	$\# 11)$	$\frac{1}{1}$	$\# 12)$	$\frac{1}{2}$
$\# 13)$	$\frac{2}{3}$	$\# 14)$	37.5%	$\# 15)$	41.7%
$\# 16)$	325%	$\# 17)$	$36,72,72$ or $45,45,90$		

\#18) Yes, because their capital-to-assets ratio is 4.4\% which is greater than 4\%.
\#19) About 1.3

Similar Polygons

Draw the following. Mark the congruent angles. \#1) $\triangle C A T \sim \triangle D O G$

Hw Section 7.2
The following triangles are similar. Fill in the blank using the proper order. Find the scale factor.
\#4)

$\triangle E F G \sim$ \qquad

Scale Factor $=$

$\triangle G F E \sim$ \qquad

Scale Factor $=$
\#6)

$\Delta V U T \sim$ \qquad

Scale Factor $=$

Each pair of polygons are similar. Find the missing length. \#7)

\#8)

\#9)

The following polygons are similar. Find the value of x. \#11)

\#12)

\#13)

\#15)

\#16)

Similar Triangles

\#1) Write down the definition of similar polygons.
\#2) Write down the definition of congruent polygons.

Determine whether each pair of triangles is similar using the given information. If similar, explain.
\#3)

\#4)

\#5)

\#6)

Find the value of x.
\#7) $Q R=x+4, R S=2 x+3, Q P=3, T S=5$

\#8) $Q R=3 x-4, R S=x+1, Q P=4, T S=6$

Determine if each pair of triangles is similar. If similar, state the reason and find the missing measures.
\#9)

\#10)

Identify the similar triangles in each figure. Explain why they are similar and find the missing measures of x and y. \#11)

\#12)

Draw a picture, make a proportion \& answer the question. \#13) A 10-foot tree casts a 3 foot shadow. How tall is a tree that casts a 22 -foot shadow at the same time of day? Round to one decimal place.
\#3) Yes by AA similarity
\#4) No (corresponding sides are not proportional)
\#5) Yes by SSS similarity \#6) Yes by AA similarity
\#7) $x=11 \quad$ \#8) $x=2$
\#9) Yes, SAS similarity. $x=4.5$ or $\frac{9}{2}$
\#10) Yes, AA similarity. $\left(\frac{10}{3}, 3\right)$
\#11) $\triangle A B C$ is similar to $\triangle D E C$, by AA Similarity, $(16,20)$
\#12) $\triangle A B E$ is similar to $\triangle A D C$, by AA Similarity, $(5,3)$
\#13) 73.3'
\qquad

Similar Triangles

End of Course Test Questions

Question 3

Triangle XYZ is shown.

Which triangle must be similar to triangle XYZ ?
(A) a triangle with two angles that measure 40°
(B) a triangle with angles that measure 40° and 60°
(C) a scalene triangle with only one angle that measures 100°
(D) an isosceles triangle with only one angle that measures 40°

Question 34

Triangle MNO is shown.

Which triangle can be shown to be congruent to triangle MNO with only the given information?
(A)

(c)

(B)

(D)

Question 17

James correctly proves the similarity of triangles DAC and DBA as shown.

His incomplete proof is shown.

Statements		Reasons	
1.	$\mathrm{m} \angle \mathrm{CAB}=\mathrm{m} \angle \mathrm{ADB}=90^{\circ}$	1.	Given
2.	$\mathrm{m} \angle \mathrm{ADB}+\mathrm{m} \angle \mathrm{ADC}=180^{\circ}$	2.	Angles in a linear pair are supplementary.
3.	$90^{\circ}+\mathrm{m} \angle \mathrm{ADC}=180^{\circ}$	3.	Substitution
4.	$\mathrm{m} \angle \mathrm{ADC}=90^{\circ}$	4.	Subtraction property of equality
5.	$\begin{aligned} & \angle \mathrm{CAB} \cong \angle \mathrm{ADB} \\ & \angle \mathrm{CAB} \cong \angle \mathrm{ADC} \end{aligned}$	5.	Definition of congruent angles
6.	$\begin{aligned} & \angle \mathrm{ABC} \cong \angle \mathrm{DBA} \\ & \angle \mathrm{DCA} \cong \angle \mathrm{ACB} \end{aligned}$	6.	Reflexive property of congruence
7.	$\begin{aligned} & \triangle \mathrm{ABC} \sim \triangle \mathrm{DBA} \\ & \triangle \mathrm{ABC} \sim \triangle \mathrm{DAC} \end{aligned}$	7.	?
8.	\triangle DBA $\sim \triangle$ DAC	8.	Substitution

What is the missing reason for the seventh statement?
(A) CPCTC
(B) AA postulate
(c) All right triangles are similar.
(D) Transitive property of similarity

Similar Triangles
Hw Section 7.3B continued \#1) Write down the definition of similar polygons.
\#2) Write down the definition of congruent polygons.

Determine whether each pair of triangles is similar using the given information. If similar, explain. \#3)

\#4)

\#5)

\#6)

Find the value of x.

Determine if each pair of triangles is similar. If similar, state the reason and find the missing measures.
\#9)

\#10)

Identify the similar triangles in each figure. Explain why they are similar and find the missing measures of x and y. \#11)

\#12)

Draw a picture, make a proportion \& answer the question. \#13) A Ford Mustang is 15 feet long. Jimmy wants to make a model of the car using 2 feet to 7 inch scale. How long is the model? Round to one decimal place.
\#3) Yes by AA similarity \#4) Yes, SSS similarity. \#5) No, (corresponding sides are not proportional)
\#6) No, (corresponding angles are not congruent)
\#7) $x=26 \quad$ \#8) $x=2$
\#9) Yes, SAS similarity. $x=10$
\#10) Yes, AA similarity. $(4,3)$
\#11) $\triangle A B C$ is similar to $\triangle D E C$, by AA Similarity, $(40,4)$
\#12) $\triangle A B E$ is similar to $\triangle A D C$, by AA Similarity, $(7,8)$
\#13) $52.5^{\prime \prime}$

Similarity

\#1) Define ratio.
\#5) The ratio of the measures of the angles of a triangle is 3:5:7. What is the measure of each angle in the triangle?
\#6) On a map of Ohio, three fourths of an inch represents 15 miles. If it is approximately 10 inches from Sandusky to Cambridge on the map, what is the actual distance in miles?
\#4) $\quad \frac{10}{9}=\frac{30}{x+2}$
Solve each proportion

$$
\frac{x}{12}=\frac{8}{30}
$$

$$
\frac{10}{9}=\frac{30}{x+2}
$$

\#7) Define scale factor.

Determine if each pair of polygons is similar by using the

\#8) Define similar polygons. definition of similar. Justify your answer.
\#9)

If quadrilateral PQRS is similar to ABCD, find the scale factor of quadrilateral PQRS to quadrilateral ABCD.

\#12) State the AA Similarity
\#13) State the SSS Similarity:
\#14) State the SAS Similarity:
\#15) In the figure, $\overline{S T} / / \overline{P R}, \mathrm{QS}=3, \mathrm{SP}=1$, and $\mathrm{TR}=1.2$. Find QT.

\#16) If $T S=6, Q P=4, R S=x+1$, and $Q R=3 x-4$, find the value of x

\#17) \qquad Jose performs a transformation on a triangle. The resulting is similar but not congruent to the original triangle. Which transformation did Jose use?
A) Dilation
B) Reflection
C) Rotation
D) Translation
\#18) A study reports that in 2000 the population of the United States was 282,054,422 people and the land area was approximately $3,531,905$ square miles.

Based on the study, what was the population density, in people per square mile, of the United States in 2000? Round your answer to the nearest tenth.
\#19) Lainie wants to calculate the height of the sculpture. She places a mirror on the ground so that when she looks into the mirror she sees the top of the sculpture, as shown.

What is the height, in feet, of the sculpture?
\#20) Triangle $A B C$ is dilated with a scale factor of k and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.

What is the scale factor?
\#21) A 10-foot ladder and a 3-foot ladder are leaning against a house. The two ladders create angles of the same measure with the ground. The 3 -foot ladder has a height of 2.5 feet against the house.

What is the height, in feet, of the 10 -foot ladder against the house?
\qquad

Parallel Lines \& Proportional Parts

In the figure, $\overleftrightarrow{Y A}\|\overleftrightarrow{O E}\| \overleftrightarrow{B R}$. Complete each statement.

\#1) $\frac{Y O}{O B}=\frac{A E}{}$
\#2) $\frac{Y B}{O B}=\frac{}{E R}$

$$
\begin{array}{ll}
\text { \#3) } \frac{-}{A E}=\frac{Y B}{Y O} & \text { \#4) } \frac{D Y}{Y O}=\frac{D A}{Y} \\
\text { \#5) } \frac{D R}{Y B}=\frac{D B}{Y B} & \text { \#6) } \frac{}{A E}=\frac{D O}{Y O}
\end{array}
$$

Find the value of x and y.
\#7)

\#8)

Hw Section 7.4

Using the figure, determine the value of x that would make $\overline{P Q} \| \overline{D F}$ under each set of conditions. \#10) $\mathrm{EQ}=3, \mathrm{DP}=12, \mathrm{QF}=8, \mathrm{PE}=\mathrm{x}+2$

D

Using the figure, determine the value of x under each set of conditons.
\#12) $\overline{B D} / / \overline{A E}, \mathrm{AB}=6, \mathrm{DE}=8, \mathrm{DC}=4, \mathrm{BC}=\mathrm{x}$

\#13) $\overline{A C} / / \overline{D F}, \mathrm{DC}=7, \mathrm{DE}=5, \mathrm{FA}=8, \mathrm{FE}=\mathrm{x}$

\#14) If B, D, and F are the midpoints of sides $\overline{C A}, \overline{C E}$, and $\overline{A E}$ respectively, $\mathrm{BD}=7, \mathrm{BF}=12$, and $\mathrm{DF}=16$, find the perimeter of $\triangle A C E$. What is the ratio of the perimeter of $\triangle B D F$ to the perimeter of $\triangle A E C$?
\#15) If B, D, and F are the midpoints of sides $\overline{C A}, \overline{C E}$, and $\overline{A E}$ respectively in $\triangle A C E, B D=8, C A=10$, and $D E=4$, find $D F, A E$, and $B F$.
\#16) In Forest Park, the home lots are laid out as shown. What is the individual frontage of each lot on Piano Drive if the total frontage on the drive for the five lots is known to be 350feet?

\#1) ER
\#2) AR
\#3) AR
\#4) AE
\#7) $(15,7)$
\#5) AR
\#6) DE
\#10) 2.5
\#8) $(2,12)$
\#9) $(24,30)$
\#13) $\frac{40}{7}$
\#11) 18
\#12) 3
\#15) $\mathrm{DF}=5, \mathrm{AE}=16, \mathrm{BF}=4$
\#16) $w \approx 77.8 \mathrm{ft}, \mathrm{x} \approx 84.3 \mathrm{ft}, \mathrm{y} \approx 90.7 \mathrm{ft}, \mathrm{z} \approx 97.2$
\qquad

Parts of Similar Triangles

Hw Section 7.5
In the figure $\triangle A B C \sim \triangle P Q R, \overline{B D}$ is an altitude of $\triangle A B C$, and $\overline{Q S}$ is an altitude of $\triangle P Q R$. Determine whether each statement is true or false.

\#1) $\frac{B D}{Q S}=\frac{A B}{P Q}$
\#2) $\frac{A D}{P S}=\frac{Q R}{B C}$
\#3) $\frac{Q P}{A B}=\frac{B D}{Q S}$
\#4) $\frac{Q R}{B C}=\frac{Q S}{B D}$
\#5) $\frac{B D}{Q S}=\frac{A C}{P R}$
\#6) $\frac{A B}{B D}=\frac{P Q}{Q S}$

Using the figure, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \overline{A R} \cong \overline{R C}$ and $\overline{D S} \cong \overline{S F}$.
Find the value of x.
\#7) $A C=20, D F=12, E S=5, B R=x$

\#8) $B C=x+2, B R=x-5, E S=6, E F=16$

Find the value of x.

\#10)

\#11)

Using the figure, determine the value of x under each set of conditons.
\#12) In the figure, $\Delta \mathrm{WXY} \sim \Delta \mathrm{JKL}, \overline{X Z}$ and $\overline{K M}$ are medians. If $\mathrm{XZ}=4, \mathrm{WZ}=3, \mathrm{JL}=\mathrm{x}+2$, and $\mathrm{KM}=2 \mathrm{x}-5$, find JM .

\#13) In the figure, $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}, \overline{A X}$ and $\overline{D Y}$ are altitudes. Find DY.

\#14) In the figure, Δ STU $\sim \Delta W Z Y$. If the perimeter of Δ STU is 30 units, find the value of x.

\#15) Lenny is having his senior portrait taken. Suppose Lenny is 300 cm from a camera lens and the film is 1.3 cm from the lens. If Lenny is 180 cm tall, how tall is his image on the film?

\#1) True	\#2) False	\#3) False
\#4) True	\#5) True	\#6) True
\#7) $\frac{25}{3}$	\#8) $\frac{46}{5}=9.2$	\#9) $\frac{27}{4}=6.75$
\#10) $\frac{90}{11}$	\#11) 6	\#12) $\frac{27}{8}$
\#13) $\frac{1}{3}$ or 3	\#14) 6	\#15) $\frac{39}{50}=0.78 \mathrm{~cm}$

End of Course Released Question

2019

Question 49

A park has a triangular sandbox. Todd wants to create a smaller sandbox at his backyard having the same angles as the park sandbox.

Drawings of both sandboxes are shown.

What is the perimeter, in feet (ft), of Todd's sandbox?

Similarity

Answer true or false. If false, tell why in the margin after the problem.
\#1) A ratio is a comparison of two numbers.
\#2) Cross products are another name for cross multiply.
\#3) The golden ratio was used by Egyptians and is the ratio 1:1.618.
\#4) If two angles of one triangle are congruent to two angles of another triangle, then the triangles are congruent.
\#5) Similarity of triangles is reflexive, symmetric, and transitive.
\#6) An altitude of a triangle goes through a vertex and is perpendicular to the side opposite that vertex.
\#7) Perimeter is the distance around an object.
\#8) A proportion is an equation stating that two ratios are equal.
\#9) If triangle ABC is similar to triangle EFG , then $\frac{A B}{E F}=$ $\frac{B C}{E G}$
\#10) An equilateral triangle always has 60° angles.

Multiple choice. Choose the best answer. \#11) Which of the following proportions is true if quadrilateral ABCD is similar to quadrilateral EFGH ?
A) $\quad \frac{A B}{D C}=\frac{H G}{E F}$
B) $\quad \frac{A D}{D C}=\frac{H E}{F G}$
C) $\quad \frac{B C}{D C}=\frac{F G}{H G}$
D) $\frac{17}{19}=\frac{3}{4}$

Chapter 7 Review

\#12) Which of the following is NOT true given that $\overline{A B}\|\overline{C D}\| \overline{E F}$?

A) $\frac{A C}{B D}=\frac{C E}{D F}$
B) $\quad \frac{A E}{B F}=\frac{C E}{D F}$
C) $\frac{A C}{B D}=\frac{D F}{C E}$
D) $\overline{A B} / / \overline{E F}$
\#13) Which of the following is a true conclusion given that $\overline{A B} \| \overline{D C}$?

A) $2 \mathrm{DC}=\mathrm{AB}$
B) $\quad \mathrm{DC}=1 / 2 \mathrm{AB}$
C) $\frac{D C}{A B}=\frac{A B}{D C}$
D) $\frac{E D}{E C}=\frac{D A}{C B}$
\#14) If $\triangle A B C$ is similar to $\triangle E F G$, find x.

A) $\frac{35}{6}$
B) $\frac{40}{7}$
C) $\frac{35}{8}$
D) No solution.
\#15) If triangle ABC is similar to triangle EFG , find x .

A) $\frac{1}{3}$
B) 3
C) $\frac{9}{2}$
D) $\frac{2}{9}$

Short answer. Use complete sentences. A definition covers all situations. An example is a specific situation. \#16) Define similar polygons. Also, give an example of similar polygons.
Definition

Example:

\#17) Define congruent polygons. Also, give an example of congruent polygons.
Definition

Example:
\#18) Define scale factor. Also, give an example of a scale factor. Definition

Example:
\#19) Define SSS similarity. Also, give an example of SSS similarity.
Definition
\#20) Find the value of x and y.

$$
x+12
$$

\#21) If B, D, and F are midpoints of sides $\overline{C A}, \overline{C E}$, and $\overline{A E}$ respectively, $\mathrm{BD}=6, \mathrm{BF}=12$, and $\mathrm{DF}=15$, find the perimeter of $\triangle \mathrm{AEC}$. Also, label the lengths of each segment in your drawing.
\#22) Find the value of x.

\#23) Find all values of x.

$$
\frac{x+1}{7}=\frac{8}{x}
$$

\#24) The pitch of a roof is the ratio of the rise to the run. If a roof has a rise of 2.5 feet and a run of 13.5 feet, what is its pitch?
\#25) While chilling in the attic, Anne Frank is making a rectangular clay plaque 25 inches wide and 36 inches long. The plaque shrinks uniformly in the kiln to a 30 -inch length. What is the width after the plaque shrinks?

Transformations - Isometries

1. Circle which of the following are isometric transformations? (there may be more than 1 answer) And determine which transformation took place by writing reflection, translation, rotation, dilation, stretch or other under each image.
Pre-Image

Image A

\qquad

Image C

2. Circle which of the following are isometric transformations? (there may be more than 1 answer) And determine which transformation took place by writing reflection, translation, rotation, dilation, stretch or other under each image.

\qquad

Image D

\qquad
\qquad -
3. Jane claims that any two circles are always isometric because the shape never changes. Is she correct?

YES or NO Explain your answer.
4. Determine if the pre-image and image are isometric and also write down which transformation (rotation, reflection, translation, dilation, stretch, or other) produced the image.

Image A

Image B

5. Determine if the pre-image and image are isometric and also write down which transformation (rotation, reflection, translation, dilation, stretch, or other) produced the image.

6. Plot the preimage triangle. Determine the coordinates of the image, plot the image and determine if it is an isometric transformation.

	Transformation
a) Pre-Image Points	Coordinate Rule
A (1,-4)	$(x, y) \rightarrow(x-5, y+3)$
B (2,-1)	Image Points
C ($6,-4$)	$\underline{\text { Image Points }}$
	A^{\prime} (___ $]^{\text {_ }}$)
Isometry? Yes or No	B^{\prime} (_______)
Transformation Type:	C' (___ , _ _)

7. Plot the preimage triangle. Determine the coordinates of the image, plot the image and determine if it is an isometric transformation.

	Transformation
a) Pre-Image Points	Coordinate Rule
A (1,-4)	$(x, y) \rightarrow(y,-x)$
B (2,-1)	Image Points
$C(6,-4)$	$A^{\prime}($
Isometry? Yes or No	$B^{\prime}\left(\square _\right.$_ \quad)
Transformation Type:	C' $^{\prime}$

8. Plot the preimage triangle. Determine the coordinates of the image, plot the image and determine if it is an isometric transformation.

	Transformation
a) Pre-Image Points	Coordinate Rule
A (1,-4)	$(x, y) \rightarrow$ (-x, y)
B (2,-1)	Image Points
$C(6,-4)$	$A^{\prime}($
Isometry? Yes or No	B^{\prime} (______)
Transformation Type:	C' $^{\prime}$ ___ ${ }^{\text {_ }}$ - $)$

9. Plot the preimage triangle. Determine the coordinates of the image, plot the image and determine if it is an isometric transformation.

	Transformation
a) Pre-Image Points	Coordinate Rule
A ($-6,-4$)	$(x, y) \rightarrow$ (.5x, .5y)
B (-3,2)	Image Points
C ($6,-4$)	A^{\prime}
Isometry? Yes or No	$B^{\prime}\left(\square _\right.$_ \quad)
Transformation Type:	$\mathrm{C}^{\prime}(\underline{\sim}, ~$ _ $)$

\qquad

Transformations - Symmetry

Hw T. 2 (G.CO.A.3)

1. Draw in the lines of symmetry for each of the shapes. If none, leave the diagram blank. Then determine the order and angle of rotation for each shape.

Angle $=$ \qquad \square°
Shape B

Angle = \qquad \square°

Angle = \qquad - Angle $=\ldots$
Order = \qquad
Order = \qquad
Order $=$ \qquad Order = \qquad
2. Which of the shapes above have point symmetry?
3. What do you notice about the above shapes' orders?

Draw a figure that meets the symmetry requirements 4. line symmetry, but not rotational symmetry.
5. rotational symmetry, but not line symmetry.
6. exactly 3 lines of symmetry.
7. Draw three different figures, each having exactly one line of symmetry.
8. What do you notice about the similarities of the three shapes you drew in 7?
9. Shade each figure so it has the indicated number of reflectional symmetries.

Exactly 1 Line of Symmetry

Exactly 1 line of symmetry

Exactly 2 lines of symmetry

Exactly 2 lines of symmetry

10. Shade each figure so it has rotational symmetry.

Order 2

Order 4

Order 2

Order 4

11. Each figure shows part of a shape with a center of rotation and a given rotational symmetry. Complete the figure.

Order 4

Order 3

Order 8

12. What is the relationship between the order of the shape and the angle of rotation?
13. Provided is half of a shape and the line of reflection. Complete drawing the shape. Using dashes marks to show equal sides - label each of the sides to show who is equal to who in the shape. Do the same for angles, label which angles are equal to each other in the shape using matching symbols.

What do you notice about a shape that has one line of symmetry?
14. Given a regular hexagon, how can you alter it so that instead of having six lines of reflection it only has two? Draw the altered hexagon and draw in the two lines of symmetry.

Determine the reflectional and rotational symmetries of triangles.
15. Scalene Triangle How many lines of symmetry?

16. Isosceles Triangle How many lines of symmetry?

What is the order of rotational symmetry?
17. Equilateral Triangle How many lines of symmetry?

\qquad

Transformations - Isometries

Hw T. 3 (G.CO.A.4)

Answer each question relating the preimage to the image. 1.

A. Which transformation has taken place?
B. Distances (Same or Different)
C. Orientation (Same or Different)
D. Special Points
2.

A. Which transformation has taken place?
B. Distances (Same or Different)
C. Orientation (Same or Different)
D. Special Points
3.

A. Which transformation has taken place?
B. Distances (Same or Different)
C. Orientation (Same or Different)
D. Special Points
4.

A. Which transformation has taken place?
B. Distances (Same or Different)
C. Orientation (Same or Different)
D. Special Points
5. Given that $\triangle A B C$ was mapped to $\Delta A^{\prime} B^{\prime} C^{\prime}$ using a single transformation.

a) Why couldn't this mapping have resulted by a single translation?
b) What transformation must have mapped these two triangles? Explain your answer.
6. Given that $\triangle A B C$ was mapped to $\Delta A^{\prime} B^{\prime} C^{\prime}$ using a single transformation.

a) Why couldn't this mapping have resulted by a single reflection?
b) What transformation must have mapped these two triangles? Explain your answer.
7. $\triangle A B C$ is congruent to $\Delta A^{\prime} B^{\prime} C^{\prime}$. A student tries to determine which of these single transformations mapped $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$. She concludes that a reflection had to be involved and more than one transformation had to map these on two triangles.

a. How can she conclude that a reflection was involved?
b. How can she conclude that this wasn't just a single reflection?
8. Determine the location of Point A,
a) after a reflection $A=A^{\prime}$, where was point A ?
b) after a rotation of $27^{\circ} \mathrm{A}=\mathrm{A}^{\prime}$, where was point A ?
9. After a reflection $A A^{\prime}=24 \mathrm{~cm}$, how far was A away from the line of reflection?
10. If after a reflection $A=A^{\prime}$ and $B^{\prime}=6 \mathrm{~cm}$. What is the relationship between $\angle B A B^{\prime}$ and the line of reflection. Draw a diagram.
11. The distance from point A to the line of reflection is 10 cm , and the distance from point B to the line of reflection is also 10 cm . Jeffrey concludes that B is the image of A under a reflection. What do you think of this conclusion?
12. $\overline{B C}$ was translated by the arrow making $\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$ and $\overline{B C} \| \overline{B^{\prime} C^{\prime}}$.

a) What other segments in the diagram are congruent?
b) What other segments in the diagram are parallel?
\qquad

Translations

TRUE/FALSE

\qquad 1. A rotation is an isometry.
2. $T(x, y) \rightarrow(x, y+5)$ is an isometric transformation.
3. A rotational symmetry of order 2 means that the angle of the order is 90°.
4. It is impossible to have a shape with 3 lines of symmetry.
\qquad 5. If $\triangle M N P$ is mapped to $\Delta M^{\prime} P^{\prime} N^{\prime}$ by a single transformation, then it had to be a reflection
\qquad 6. If $T_{<6,0>}(\triangle A B C)=\triangle D E F$ then $\mathrm{BE}=6$ units.
\qquad 7. $T(x, y)---->(x+2, y)$ moves every point in the plane to a new location.

MULTIPLE CHOICE

8. Which shape property is not
guaranteed in an isometric transformation?
A) Distances
B) Angles
C) Collinearity
D) Location

9. Determine if the following are

 isometric or not.
c) Image
\qquad

Pre-Image

b) Image

Isometry?
Y or N
Isometry?
Y or N
 Pre

Isometry?
Y or N
Isometry?
Y or N

transformation.
-

10. Which of the following is an
isometric transformation of
? Choose all that apply.
A)

B)

C)
D)

\qquad 11. Which of the following is an

\qquad 12. Which term describes a transformation that does not alter a figures shape or size?
A) Symmetry
B) Similarity
C) Isometry
D) Transformation
13. Which of the
following is an isometric transformation of the pre-image? Choose all that apply.
A)

B)

C)

D)

14. When a line divides a shape into two congruent parts that line is known as:
A) the line of symmetry
B) the line of axis
C) the dividing line
D) the transversal line
15. How many lines of symmetry does
the shape have?
A) 1 lines of symmetry
B) 2 line of symmetry
C) 4 lines of symmetry
D) 8 lines of symmetry

16. This shape has:
A) Only Rotational Symmetry
B) Only Reflectional Symmetry
C) Both Rotational \& Reflectional Symmetries
D) Neither symmetry
17. What is the angle of rotational
symmetry when the order is 10 ?
A) 18°
B) 36°
C) 45°
D) 72°
18. Which of the following would have
the greatest lines of symmetry?
A) A Square
B) Irregular Hexagon
C) Equilateral Triangle
D) Regular Hexagon
\qquad 19. Which of the follow have both rotational and reflectional symmetry? Choose all that apply.
A) Parallelogram
B) Rhombus
C) Equilateral Triangle
D) Rectangle
20. Which flag has 2 lines of symmetry
and an order 2 rotational symmetry?
A) Bahama's

C) Bouvet Island
B) Austria

D) Canada

21. If an 8 sided polygon had 8 lines of symmetry and a rotational order of 8 , the best name for it would be:
A) Symmetrical
B) Regular
C) Special
D) Perfect
22. $\triangle \mathrm{ABC}$ is reflected to create image
$\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is always true?
A) $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
B) $\overline{A A^{\prime}} \perp \overline{B B^{\prime}}$
C) $\overline{A B} \perp \overline{A^{\prime} B^{\prime}}$
D) $\overline{A A^{\prime}} \| \overline{B B^{\prime}}$
23. If $R_{O, 180^{\circ}}(H)=T$, which of the below statement is true. Choose all that apply.
A) $\overrightarrow{O H}$ and $\overrightarrow{O T}$ are opposite rays
B) $\mathrm{m} \angle \mathrm{TOH}=180^{\circ}$
C) T is on $\overleftrightarrow{O H}$
D) $\angle \mathrm{HTO}$ is a straight angle
24. If $\mathrm{A}(0,4)$, which of the following
transformation would map $\mathrm{A}=\mathrm{A}^{\prime}$?
a) $R_{A, 180^{\circ}}$
b) Translate by $\langle-3,0\rangle$
c) $r_{x \text { axis }}$
d) $r_{x=4}$
25. A figure is transformed in a plane such that no point maps to itself. Which transformation must it be?
A) Reflection
B) Translation
C) Rotation
D) Dilation
\qquad

SHORT ANSWER

26. Given coordinate rule, $T(x, y) \rightarrow(x-5,2 y)$ determine the image of $A(-9,3)$?
27. Given coordinate rule, $T(x, y) \longrightarrow(x, x+y)$ determine the image of $A(-4,5)$?
28. Given coordinate rule, $T(x, y) \rightarrow\left(-x^{2}, x-5\right)$ determine the image of $A(-2,2)$?
29. Given coordinate rule, $T(x, y) \longrightarrow(x+2, y-6)$ determine the pre-image of $A^{\prime}(-2,2)$?
30. Draw in the lines of symmetry for each of the shapes. If none, leave the diagram blank.

31. Determine the rotational symmetry order and angle of rotation for each diagram. If none, write 1.

Order = \qquad

Angle = \qquad

32. Given the shape, shade it so it has exactly one line of symmetry

33. Given the shape, shade it so that it has rotational symmetry of order 4

34. If point A is reflected over line m and $A=A^{\prime}$. What do we know about the location of point A ?
35. $\triangle A B C$ is reflected over line g to create the image $\Delta A^{\prime} B^{\prime} C^{\prime}$. What is the relationship between $\overline{A A^{\prime}}, \overline{B B^{\prime}}$ and $\overline{C C^{\prime}}$?
36. Determine the smallest positive angle of rotation that would perform the same rotation as the given one.
a) $R_{O,-60^{\circ}}=R_{O,}{ }^{\circ}$
b) $R_{O, 721^{\circ}}=R_{O}$ \qquad
c) $R_{O,-90^{\circ}}=R_{O, \ldots}{ }^{\circ}$
37. Point B is reflected over $\overleftrightarrow{G H}$ resulting in G being the midpoint of $\overline{B B^{\prime}}$. What is the $\mathrm{m} \angle \mathrm{BGH}$? Draw a diagram and explain your answer.

Midterm Review

1. Reflect FOXY across line $y=x$.

2. Parallelogram SHAQ is shown. Point E is the midpoint of segment SH . Point F is the midpoint of segment AQ

Which transformation carries the parallelogram onto itself?
A) A reflection across line segment SA
B) A reflection across line segment EF
C) A rotation of 180 degrees clockwise about the origin
D) A rotation of 180 degrees clockwise about the center of the parallelogram.
3. Square BERT is transformed to create the image $B^{\prime} E^{\prime} R^{\prime} T^{\prime}$, as shown.

Select all of the transformations that could have been performed.
A) A reflection across the line $y=x$
B) A reflection across the line $y=-2 x$
C) A rotation of 180 degrees clockwise about the origin
D) A reflection across the x-axis, and then a reflection across the y-axis.
E) A rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis.
4. Smelly Kid performs a transformation on a triangle. The resulting triangle is similar but not congruent to the original triangle. Which transformation did Smelly Kid perform on the triangle?
A) Dilation
B) Reflection
C) Rotation
D) Translation
5. Triangle $A B C$ had vertices of $A(1,1), B(2.5,3)$ and $C(0$, $-3)$. It is dilated by a scale factor of $1 / 2$ about the origin to create triangle $A^{\prime} B^{\prime} C^{\prime}$. What is the length, in units, of side $\overline{B^{\prime} C^{\prime}}$?
6. Complete the statement to explain how it can be shown that two circles are similar. Circle M can be mapped onto circle N by a reflection across \qquad and a dilation about the center of circle M by a scale factor of
\qquad

7. A translation is applied to $\triangle D O G$ to create $\triangle D^{\prime} O^{\prime} G^{\prime}$.

Let the statement $(x, y) \rightarrow(a, b)$ describe the translation. Create equations for a in terms of x and for b in terms of y that could be used to describe the translation.
$a=$ \qquad
$b=$ \qquad
8. Triangle HEN is shown.

Triangle $H^{\prime} E^{\prime} N^{\prime}$ is created by dilating triangle HEN by a scale factor of 4 . What is the length of $\overline{H^{\prime} E^{\prime}}$?
9. A figure is fully contained in Quadrant II. The figure is transformed as shown.

- A reflection over the x-axis
- A reflection over the line $y=x$
- A 90° counterclockwise rotation about the origin.

In which quadrant does the resulting image lie?
A) Quadrant I
B) Quadrant II
C) Quadrant III
D) Quadrant IV
10. Rhombus PQRS is shown in the coordinate plane. Points M and N are midpoints of their respective sides.

Select all of the transformations that map the rhombus onto itself.
A) A 90° clockwise rotation around the center of the rhombus
B) A 180° clockwise rotation around the center of the rhombus
C) A reflection across $\overline{N M}$
D) A reflection across $\overline{Q S}$
11. Triangle $A B C$ is reflected across the line $y=2 x$ to form triangle RST. Select all of the true statements.
A) $\overline{A B}=\overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
B) $\overline{A B}=2 \cdot \overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
C) $\triangle A B C \sim \triangle R S T$
D) $\triangle A B C \cong \triangle R S T$
E) $m \angle B A C=m \angle S R T$
F) $m \angle B A C=2 \cdot m \angle S R T$
12. Triangle BAL is reflected across the line $y=x$. Draw the resulting triangle.

14. The coordinate plane shows $\Delta F G H$ and $\Delta F^{\prime \prime} G " H "$

Which sequence of transformations can be used to show that $\Delta F G H \sim \Delta F " G " H$ "?
A) A dilation about the origin with a scale factor of 2 , followed by a 180° clockwise rotation about the origin.
B) A dilation about the origin with a scale factor of 2 , followed by a reflection over the line $y=x$
C) A translation 5 units up and 4 units left, followed by a dilation with a scale factor of $1 / 2$ about point F"
D) A 180° clockwise rotation about the origin, followed by a dilation with a scale factor of $1 / 2$ about F"
13. All corresponding sides and angles of $\triangle R S T$ and $\triangle D E F$ are congruent. Select all of the statements that must be true.
A) There is a reflection that maps $\overline{R S}$ to $\overline{D E}$
B) There is a dilation that maps $\triangle R S T$ to $\triangle D E F$
C) There is a translation followed by a rotation that maps $\overline{R T}$ to $\overline{D F}$
D) There is a sequence of transformations that maps $\triangle R S T$ to $\triangle D E F$
E) There is not necessarily a sequence of rigid motions that maps $\triangle R S T$ to $\triangle D E F$
15. Two triangles are shown.

Which sequence of transformations could be performed on $\triangle E F G$ to show that it is similar to $\Delta J K L$?
A) Rotate $\triangle E F G 90^{\circ}$ clockwise about the origin, and then dilate it by a scale factor of $1 / 2$ with a center of dilation at point F^{\prime}
B) Rotate $\triangle E F G 180^{\circ}$ clockwise about point E , and then dilate it by a scale factor of 2 with a center of dilation at point E^{\prime}
C) Translate $\triangle E F G 1$ unit up, then reflect it across the x-axis, and then dilate it by a factor of $1 / 2$ with a center of dilation at point E"
D) Reflect $\triangle E F G$ across the x-axis, then reflect it across the line $y=x$, and then dilate it by a scale factor of 2 with a center of dilation at point $F^{\prime \prime}$
16. A triangle is shown on the coordinate grid. Draw the triangle after a transformation following the rule $(x, y) \rightarrow(x-4, y+3)$

17. Triangle $A B C$ is dilated with a scale factor of k and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.

What is the scale factor?
18. A square is rotated about its center. Select all of the angles of rotation that will map the square onto itself.
A) 45 degrees
B) 60 degrees
C) 90 degrees
D) 120 degrees
E) 180 degrees
F) 270 degrees
20. \qquad Kyle performs a transformation on a triangle. The resulting is similar but not congruent to the original triangle. Which transformation did Kyle use?
E) Dilation
F) Reflection
G) Rotation
H) Translation
21. A study reports that in 2010 the population of the United States was $308,745,538$ people and the land area was approximately $3,531,905$ square miles.

Based on the study, what was the population density, in people per square mile, of the United States in 2010? Round your answer to the nearest tenth.
22. Lainie wants to calculate the height of the sculpture. She places a mirror on the ground so that when she looks into the mirror she sees the top of the sculpture, as shown.

What is the height, in feet, of the sculpture?
\qquad
23. Triangle $A B C$ is dilated with a scale factor of k and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.

What is the scale factor?
24. A 9-foot ladder and a 4-foot ladder are leaning against a house. The two ladders create angles of the same measure with the ground. The 4 -foot ladder has a height of 3.8 feet against the house.

What is the height, in feet, of the 9-foot ladder against the house?
25. Triangle XYZ is shown.

Which triangle must be similar to $\triangle X Y Z$?
A) A triangle with two angles that measure 40 degrees.
B) A triangle with angles that measure 40 and 60 degrees
C) A scalene triangle with only one angle that measures 100 degrees
D) An isosceles triangle with only one angle that measures 40 degrees
26. $\overline{A B}$ has endpoints $\mathrm{A}(-1.5,0)$ and $\mathrm{B}(4.5,8)$. Point C is on line $\overline{A B}$ and is located at $(0,2)$. What the ratio of $\frac{A C}{C B}$? Round to 2 decimal places.
27. $\overline{A C}$ has endpoints $\mathrm{A}(-1,-3.5)$ and $\mathrm{C}(5,-1)$. Point B is on $\overline{A C}$ and is located at $(0.2,-3)$. What is the ratio of $\frac{A B}{B C}$?
28. Two pairs of parallel lines intersect to form a parallelogram as shown.

Place statements and reasons in the table to complete the proof that the opposite angles in a parallelogram are congruent.

Statement	Reason			
$1 . m \\| n$ and $k \\| l$	1. Given			
2.	2.			
3.	3.			
4.	4.			

A. $\angle 1 \cong \angle 2$
B. $\angle 1 \cong \angle 3$
C. $\angle 2 \cong \angle 3$
D. Alternate exterior angles theorem
E. Alternate interior angles theorem
F. Transitive property of congruence
G. Opposite angles are congruent
H. Corresponding angles postulate
29. James correctly proves the similarity of triangles DAC and DBA as shown.

His incomplete proof is shown.

Statement	Reason
1. $m \angle C A B=m \angle A D B=90^{\circ}$	1. Given
2. $\angle A D B$ and $\angle A D C$ are a linear pair	2. Definition of linear pair
3. $\angle A D B$ and $\angle A D C$ are supplementary	3. Supplement postulate
$4 . m \angle A D B+m \angle A D C=180^{\circ}$	4. Definition of supplementary angles
$5.90^{\circ}+m \angle A D C=180^{\circ}$	5. Substitution PoE
$6 . m \angle A D C=90^{\circ}$	6. Subtraction PoE
7. $\angle C A B \cong \angle A D B$ $\angle C A B \cong \angle A D C$	7. Definition of congruent angles
8. $\angle A B C \cong \angle D B A$ $\angle D C A \cong \angle A C B$	8. Reflexive property of congruent angles
9. $\triangle A B C \sim \triangle D B A$ $\triangle A B C \sim \triangle D A C$	9.
$10 . \triangle D B A \sim \triangle D A C$	10. Substitution PoE

What is the missing reason for the 9th statement?
A) CPCTC
B) AA postulate
C) All right triangles are similar
D) Transitive property of similarity
\qquad
30. $\triangle P Q R$ is shown, where $\overline{S T} \| \overline{R Q}$

Marta wants to prove that $\frac{S R}{P S}=\frac{T Q}{P T}$.
Place a statement or reason in each blank box to complete Marta's proof.

Statement	Reason	
1. $\overline{S T} \\| \overline{R Q}$	1. Given	
2. $\angle P S T \cong \angle R$ $\angle P T S \cong \angle Q$	2. Corresponding angles postulate	
3. $\Delta P Q R \sim \Delta P T S$	3.	
4.	4.	
5. $P R=P S+S R$ $P Q=P T+T Q$	5. Segment addition postulate	
6. $\frac{P S+S R}{P S}=\frac{P T+T Q}{P T}$	6. Substitution PoE	
7. $\frac{P S}{P S}+\frac{S R}{P S}=\frac{P T}{P T}+\frac{T Q}{P T}$	7. Communitive PoE	
8. $\frac{S R}{P S}=\frac{T Q}{P T}$		

A. $\frac{P R}{P S}=\frac{P Q}{P T}$
B. $\frac{P S}{S R}=\frac{P T}{S T}$
C. $\angle P \cong \angle P$
D. AA Similarity
E. ASA Similarity
F. SSS Similarity
G. Reflexive Property
H. Segment addition postulate
I. Corresponding sides of similar triangles are proportional
J. Corresponding sides of similar triangles are congruent
K. Alternate interior angles theorem
L. Alternate exterior angles theorem
31. Triangle $A B C$ is shown.

Given: $\triangle A B C$ is isosceles. Point D is the midpoint of $\overline{A C}$.
Prove: $\angle B A C \cong \angle B C A$

Statement	Reason
1. $\triangle A B C$ is isosceles. D is the midpoint of $\overline{A C}$	1. Given
$2 . \overline{A D} \cong \overline{D C}$	2. Definition of midpoint
$3 . \overline{B A} \cong B C$	3. Definition of isosceles triangle
$4 . \overline{B D}$ exists	4. A line segment can be drawn between any two points
$5 . B D \cong B D$	5.
$6 . \triangle A B D \cong \triangle C B D$	6.
$7 . \angle B A C \cong \angle B C A$	7.

AA congruency postulate
SAS congruency postulate
SSS congruency postulate
CPCTC
Reflexive property
Symmetric property
Midpoint theorem
32. The proof shows that opposite angles of a parallelogram are congruent.

Given: $A B C D$ is a parallelogram with diagonal $\overline{A C}$
Prove: $\angle B A D \cong \angle D C B$

Statement	Reason		
1. $A B C D$ is a parallelogram with diagonal $\overline{A C}$	1. Given		
2. $\overline{A B} \\| \overline{C D}$ and $\overline{A D} \\| \overrightarrow{B C}$	2. Definition of parallelogram		
$\text { 3. } \begin{aligned} \angle 2 & \cong \angle 3 \\ \angle 1 & \cong \angle 4 \end{aligned}$	3. Alternate interior angles theorem		
$\text { 4. } \begin{aligned} m \angle 2 & =m \angle 3 \\ m \angle 1 & =m \angle 4 \end{aligned}$	4. Definition of congruent angles		
5. $m \angle 1+m \angle 2=m \angle 4+m \angle 2$	5. Addition property of equality		
6. $m \angle 1+m \angle 2=m \angle 4+m \angle 3$	6.		
	7. Angle addition postulate		
8. $m \angle B A D=m \angle D C B$	8. Substitution PoE		
9. $\angle B A D \cong \angle D C B$	9. Definition of congruent angles		

What is the missing reason in this partial proof?
A) ASA
B) Substitution PoE
C) Angle addition postulate
D) Alternate interior angles postulate
33. The graph of line m is shown

What is the equation of the line that is perpendicular to line m and passes through the point $(3,2)$?
34. Square $A B C D$ has vertices at $A(1,2)$ and $B(3,-3)$. What is the slope of $\overline{B C}$?
35. Kevin asked Olivia what parallel lines are. Olivia responded, "They are lines that never intersect." What important piece of information is missing form Olivia's response?
A. The lines must be straight.
B. The lines must be coplanar.
C. The lines can be noncoplanar.
D. The lines form four right angles.
36. Triangle $A B C$ has vertices at $(-4,0),(-1,6)$ and $(3,-1)$. What is the perimeter of triangle $A B C$, rounded to the nearest tenth?
\qquad

Translations

Graph and label the image of the figure using the transformation given.

1) translation: $(x, y) \rightarrow(x+1, y+4)$

2) translation: $\langle-5,-4\rangle$

Find the coordinates of the vertices of each figure after the given transformation.
3) translation: 2 units left and 3 units up
$A(4,-5), S(3,-2), E(5,-5)$
5) translation: 3 units up

$$
U(4,-3), P(3,1), S(5,1)
$$

4) translation: 1 unit left and 1 unit up $D(-4,0), J(0,3), H(-1,-1)$
5) translation: 1 unit right and 2 units down $C(-1,-3), W(2,-2), N(4,-3)$

Graph the image and the preimage of the figure using the transformation given.
7) translation: $(x, y) \rightarrow(x-5, y+4)$
$C(2,-3), V(3,1), R(5,-2)$

8) translation: $(x, y) \rightarrow\langle-1,4\rangle$
$R(-3,-3), D(0,1), C(1,0)$

Graph the image of the figure using the transformation given.
9) $T_{3,0}$

10) translation: $(x, y) \rightarrow(x-1, y+5)$

Find the coordinates of the vertices of each figure after the given transformation.
11) translation: $(x, y) \rightarrow(x-3, y-1)$

13) translation: $(x, y) \rightarrow(x-5, y+4)$ $H(1,-1), W(2,0), E(4,-5), Y(3,-5)$
12) $T_{3,-2}$

14) translation $\langle 6,-3\rangle$
$M(-4,4), Z(-4,5), E(-1,5), K(-1,3)$

Write an algebraic rule to describe each transformation.
15)

17) $L(-5,-3), X(-4,-1), J(-3,-1), Z(-5,-5)$
to
$L^{\prime}(-2,-2), X^{\prime}(-1,0), J^{\prime}(0,0), Z^{\prime}(-2,-4)$
16)

18) $V(-1,-3), T(-3,0), B(-3,1), R(1,-2)$
$V(2,-2), T^{\text {to }}(0,1), B^{\prime}(0,2), R^{\prime}(4,-1)$
\qquad

Graph and label the image of the figure using the transformation given.

1) reflection across $y=x$

2) reflection across the x-axis

Find the coordinates of the vertices of each figure after the given transformation.
3) reflection across $x=4$
$F(3,-5), C(3,-4), P(5,-4)$
4) reflection across $y=-x$ $X(-4,-3), M(-3,-2), I(-1,-5)$
5) reflection across the y-axis $M(-3,1), G(0,4), B(-1,1)$
6) reflection across the x-axis
$W(-4,4), U(1,5), K(0,0)$

Graph the image and the preimage of the figure using the transformation given.
7)

$$
\begin{aligned}
& \text { reflection across } \mathrm{x}=-1 \\
& Z(0,2), U(0,5), B(3,2)
\end{aligned}
$$

8) reflection across $y=x$
$C(-4,2), D(-2,5), T(-2,1)$

Graph the image and the preimage of the figure using the transformation given.

9) reflection across $y=-1$

10) reflection across the y-axis

Find the coordinates of the vertices of each figure after the given transformation. Then graph the reflection.
11) reflection across $x=1$

13) reflection across $x=-1$
$N(-3,2), J(-2,5), B(0,4), V(-2,1)$
12) reflection across the y-axis

14) reflection across $y=-1$
$L(1,-2), V(2,2), F(5,-1), D(4,-5)$

Tell the type of reflection that describes each transformation.
15)

17) $Y(-4,0), Q(-3,2), L(2,0), A(-2,-3)$
to

$$
Q^{\prime}(2,-3), L^{\prime}(0,2), A^{\prime}(-3,-2), Y^{\prime}(0,-4)
$$

16)

18) $B(3,-1), V(2,2), Y(5,5), J(5,2)$
$V^{\prime}(2,2), Y^{\prime}(5,5), J^{\prime}(2,5), B^{\prime}(-1,3)$

End of Course Test Questions

Question 18

Triangle ABC is reflected across the line $y=2 x$ to form triangle RST.
Select all of the true statements.
$\overline{\mathrm{AB}}=\overline{\mathrm{RS}}$$\overline{\mathrm{AB}}=2 \cdot \overline{\mathrm{RS}}$$\triangle \mathrm{ABC} \sim \triangle \mathrm{RST}$$\triangle \mathrm{ABC} \cong \triangle \mathrm{RST}$$\mathrm{m} \angle \mathrm{BAC}=\mathrm{m} \angle \mathrm{SRT}$$\mathrm{m} \angle \mathrm{BAC}=2 \bullet \mathrm{~m} \angle \mathrm{SRT}$

Question 20

2019

Question 4

A sequence of translations maps $\Delta G H I$ to $\Delta G^{\prime} H^{\prime} I^{\prime}$.

- $\Delta G H I$ has vertices at $G(-8,2), H(13,2)$, and $I(-2,10)$.
- The coordinates of G^{\prime} are $(-1,-3)$.

What are the coordinates for H^{\prime} and I^{\prime} ?

\qquad

Rotations

Hw T. 6 (G.CO.A.5)
Graph and label the image of the figure using the transformation given.

1) rotation 90° counterclockwise about the origin

2) rotation 180° about the origin

Find the coordinates of the vertices of each figure after the given transformation.
3) rotation 90° clockwise about the origin

$$
G(0,-3), B(3,-1), U(1,-5)
$$

4) rotation 90° clockwise about the origin $R(1,1), F(5,4), H(3,1)$
5) rotation 180° about the origin
$I(1,3), F(5,5), C(4,2)$
6) rotation 90° counterclockwise about the origin
$I(-5,1), X(-4,5), Q(-2,0)$

Graph the image and the preimage of the figure using the transformation given.

7) rotation 90° counterclockwise about the origin

$$
G(0,-3), B(-1,1), J(3,0)
$$

8) rotation 180° about the origin $D(-5,2), S(-3,3), Q(-3,2)$

Graph the image and the preimage of the figure using the transformation given.
9) rotation 90° clockwise about the origin

10) rotation 90° counterclockwise about the
origin

Find the coordinates of the vertices of each figure after the given transformation. Then graph the reflection.
11) rotation 90° clockwise about the origin

13) rotation 90° counterclockwise about the origin
$U(2,-4), I(0,-1), C(2,-1), E(5,-3)$
12) rotation 180° about the origin

14) rotation 180° about the origin $F(4,-3), D(3,0), V(5,0), E(5,-4)$

Tell the type of rotation that describes each transformation.

15)

17) $F(1,0), N(1,3), V(2,4), U(3,4)$

$$
\begin{gathered}
\text { to } \\
F^{\prime}(-1,0), N^{\prime}(-1,-3), V^{\prime}(-2,-4), U^{\prime}(-3,-4)
\end{gathered}
$$

16)

18) $Q(-3,1), A(-4,3), I(-2,4), E(0,4)$ $Q^{\prime}(1,3), A^{\prime}(3,4), I^{\prime}(4,2), E^{\prime}(4,0)$

Dilations

\#1) Dilate $\triangle A B C$ from C using a scale factor of 2. $D_{C, 2}(\triangle A B C)$ \#2) Dilate $\triangle D E F$ from D using a scale factor of 3. $D_{D 3}(\triangle E D F)$

\#3) $D_{A, 2}(\triangle A B C)$
\#4) $D_{E, 3}(\triangle D E F)$

\#5) $D_{G, 3}(\triangle A B C)$
\#6) $D_{H, 2}(\triangle D E F)$

\#7) $D_{G, \frac{1}{2}}(\triangle A B C)$
\#8) $D_{H, \frac{1}{3}}(\triangle D E F)$

Hw T. 7
\#9) $D_{G, 2}(\triangle A B C)$
$\# 10) D_{H, 2}(\triangle D E F)$

\#11) $D_{G, \frac{1}{2}}(\triangle A B C)$
\#12) $D_{H, \frac{1}{3}}(\triangle D E F)$

\#13) $D_{G,-1}(\triangle A B C)$
\#14) $D_{H,-\frac{1}{2}}(\triangle D E F)$

\#15) $D_{G,-2}(\triangle A B C)$
\#16) $D_{H,-1}(\triangle D E F)$

Geometry 126
\#17) Center (\qquad , \qquad Scale Factor = \qquad

\#18) Center \qquad , \qquad) Scale Factor = \qquad

\#19) Center \qquad , \qquad) Scale Factor = \qquad

\#20) Center (\qquad , \qquad Scale Factor = \qquad

\#21) Center (___ \quad ___ Scale Factor $=$

Complete all the problems. Write all your answers in slope-intercept form.
\#23) Line l has the equation $y=\frac{-1}{4} x-4$. Write the equation of the image of $\ell_{\text {after dilation with a scale }}$ factor of $\frac{1}{4}$, centered at the origin.
\#24) Line Z has the equation $y=5 x-5$. Write the equation of the image of $Z_{\text {after dilation with a scale }}$ factor of $\frac{1}{5}$, centered at the origin.
\#25) Line Z has the equation $y=\frac{-1}{4} x-3$. Write the equation of the image of $Z_{\text {after }}$ dilation with a scale factor of 2 , centered at the origin.
\#26) Line Z has the equation $y=\frac{1}{4} x-2$. Write the equation of the image of $Z_{\text {after dilation with a scale }}$ factor of $\frac{1}{2}$, centered at the origin.

Geometry 128
\#27) $D_{\text {origin }, 5}(m)=m^{\prime}$

\#28) $D_{\text {origin, }-\frac{1}{3}}(m)=m^{\prime}$

\#29) $D_{\text {origin }, 4}(m)=m^{\prime}$

\#30) $D_{\text {origin }, \frac{1}{5}}(m)=m^{\prime}$

\qquad

End of Course Test Questions

Question 6

Triangle ABC is shown.

Question 8

A figure is fully contained in Quadrant II. The figure is transformed as shown.

- a reflection over the x-axis
- a reflection over the line $y=x$
- a 90° counterclockwise rotation about the origin

In which quadrant does the resulting image lie?
(A) Quadrant I
(B) Quadrant II
(C) Quadrant III
(D) Quadrant IV

Question 12

Rhombus PQRS is shown on the coordinate plane. Points M and N are midpoints of their respective sides.

Select all of the transformations that map the rhombus onto itself.a 90° clockwise rotation around the center of the rhombusa 180° clockwise rotation around the center of the rhombus
a reflection across $\overline{\mathrm{PR}}$
a reflection across $\overline{\mathrm{NM}}$
a reflection across $\overline{\mathrm{QS}}$

Question 45

The equation of a line is shown.
$6 x-3 y=5$

A dilation centered at the origin with a scale factor of 6 is applied to this line.
A. What is the slope of the line after the dilation?
B. What is the value of the y-intercept of the line after the dilation?
A. \square
B.

Question 47

Triangle MNO is transformed to produce triangle PQR.
Select all of the transformations that would guarantee triangles MNO and PQR are congruent.a dilation, then a translationa reflection, then a dilationa reflection, then a rotationa rotation, then a translationa translation, then a reflection

Question 30

Consider the two rectangles shown.

Complete the sentence to determine whether the rectangles are similar.
Rectangle $\mathrm{ABCD} \square \vee$ similar to rectangle PQRS because $\square \checkmark \checkmark$, so
rectangle $\mathrm{ABCD} \square$ dilated to fit exactly over rectangle PQRS .

Drop down choices

Question 33

Two triangles are shown on a coordinate grid.

Katie shows that the two triangles are similar by performing the following transformations:

- First, she rotates $\triangle \mathrm{ABC} 180^{\circ}$ about point A .
- Then, she dilates $\triangle A^{\prime} B^{\prime} C^{\prime}$ by a factor of k with a center of dilation at point A.
- Finally, she translates $\triangle \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} p$ units to the right and q units down to map onto $\triangle C D E$.

What are the values of k, p, and q ?

$$
\begin{aligned}
& k=\square \\
& p=\square \\
& q=\square
\end{aligned}
$$

Transformations

1. Reflect FOXY across line $y=x$.

2. Parallelogram SHAQ is shown. Point E is the midpoint of segment SH . Point F is the midpoint of segment AQ

Which transformation carries the parallelogram onto itself?
E) A reflection across line segment SA
F) A reflection across line segment EF
G) A rotation of 180 degrees clockwise about the origin
H) A rotation of 180 degrees clockwise about the center of the parallelogram.
3. Square BERT is transformed to create the image $B^{\prime} E^{\prime} R^{\prime} T^{\prime}$, as shown.

Select all of the transformations that could have been performed.
F) A reflection across the line $y=x$
G) A reflection across the line $y=-2 x$
H) A rotation of 180 degrees clockwise about the origin
I) A reflection across the x-axis, and then a reflection across the y-axis.
J) A rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis.
4. Smelly Kid performs a transformation on a triangle. The resulting triangle is similar but not congruent to the original triangle. Which transformation did Smelly Kid perform on the triangle?
E) Dilation
F) Reflection
G) Rotation
H) Translation
5. Triangle $A B C$ had vertices of $A(1,1), B(2.5,3)$ and $C(0$, $-3)$. It is dilated by a scale factor of $1 / 2$ about the origin to create triangle $A^{\prime} B^{\prime} C^{\prime}$. What is the length, in units, of side $\overline{B^{\prime} C^{\prime}}$?
6. Complete the statement to explain how it can be shown that two circles are similar. Circle M can be mapped onto circle N by a reflection across \qquad and a dilation about the center of circle M by a scale factor of
\qquad

7. A translation is applied to $\triangle D O G$ to create $\triangle D^{\prime} O^{\prime} G^{\prime}$.

Let the statement $(x, y) \rightarrow(a, b)$ describe the translation. Create equations for a in terms of x and for b in terms of y that could be used to describe the translation.
$a=$ \qquad
$b=$ \qquad
8. Triangle HEN is shown.

Triangle $H^{\prime} E^{\prime} N^{\prime}$ is created by dilating triangle HEN by a scale factor of 4 . What is the length of $\overline{H^{\prime} E^{\prime}}$?
9. A figure is fully contained in Quadrant II. The figure is transformed as shown.

- A reflection over the x-axis
- A reflection over the line $y=x$
- A 90° counterclockwise rotation about the origin.

In which quadrant does the resulting image lie?
E) Quadrant I
F) Quadrant II
G) Quadrant III
H) Quadrant IV
10. Rhombus PQRS is shown in the coordinate plane. Points M and N are midpoints of their respective sides.

Select all of the transformations that map the rhombus onto itself.
E) A 90° clockwise rotation around the center of the rhombus
F) A 180° clockwise rotation around the center of the rhombus
G) A reflection across $\overline{N M}$
H) A reflection across $\overline{Q S}$
11. Triangle $A B C$ is reflected across the line $y=2 x$ to form triangle RST. Select all of the true statements.
G) $\overline{A B}=\overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
H) $\overline{A B}=2 \cdot \overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
I) $\triangle A B C \sim \triangle R S T$
J) $\triangle A B C \cong \triangle R S T$
K) $m \angle B A C=m \angle S R T$
L) $m \angle B A C=2 \cdot m \angle S R T$
12. Triangle BAL is reflected across the line $y=x$. Draw the resulting triangle.

13. All corresponding sides and angles of $\triangle R S T$ and $\triangle D E F$ are congruent. Select all of the statements that must be true.
F) There is a reflection that maps $\overline{R S}$ to $\overline{D E}$
G) There is a dilation that maps $\triangle R S T$ to $\triangle D E F$
H) There is a translation followed by a rotation that maps $\overline{R T}$ to $\overline{D F}$
I) There is a sequence of transformations that maps $\triangle R S T$ to $\triangle D E F$
J) There is not necessarily a sequence of rigid motions that maps $\triangle R S T$ to $\triangle D E F$
14. The coordinate plane shows $\Delta F G H$ and $\Delta F " G " H "$

Which sequence of transformations can be used to show that $\Delta F G H \sim \Delta F^{\prime \prime} G^{\prime \prime} H^{\prime \prime}$?
E) A dilation about the origin with a scale factor of 2 , followed by a 180° clockwise rotation about the origin.
F) A dilation about the origin with a scale factor of

2, followed by a reflection over the line $y=x$
G) A translation 5 units up and 4 units left, followed
by a dilation with a scale factor of $1 / 2$ about point F"
H) A 180° clockwise rotation about the origin, followed by a dilation with a scale factor of $1 / 2$ about $\mathrm{F}^{\prime \prime}$
15. Two triangles are shown.

Which sequence of transformations could be performed on $\triangle E F G$ to show that it is similar to $\Delta J K L$?
E) Rotate $\triangle E F G 90^{\circ}$ clockwise about the origin, and then dilate it by a scale factor of $1 / 2$ with a center of dilation at point F^{\prime}
F) Rotate $\triangle E F G 180^{\circ}$ clockwise about point E , and then dilate it by a scale factor of 2 with a center of dilation at point E^{\prime}
G) Translate $\triangle E F G 1$ unit up, then reflect it across the x-axis, and then dilate it by a factor of $1 / 2$ with a center of dilation at point E"
H) Reflect $\triangle E F G$ across the x-axis, then reflect it across the line $y=x$, and then dilate it by a scale factor of 2 with a center of dilation at point $\mathrm{F}^{\prime \prime}$
16. A triangle is shown on the coordinate grid. Draw the triangle after a transformation following the rule $(x, y) \rightarrow(x-4, y+3)$

17. Triangle $A B C$ is dilated with a scale factor of k and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.

What is the scale factor?
18. A square is rotated about its center. Select all of the angles of rotation that will map the square onto itself.
G) 45 degrees
H) 60 degrees
I) 90 degrees
J) 120 degrees
K) 180 degrees
L) 270 degrees
20. \qquad Kyle performs a transformation on a triangle.
The resulting is similar but not congruent to the original triangle. Which transformation did Kyle use?
A) Dilation
B) Reflection
C) Rotation
D) Translation
19. Circle J is located in the first quadrant with center (a, b) and radius s . Felipe transforms Circle J to prove that it is similar to any circle centered at the origin with radius t. Which sequence of transformations did Felipe use?
E) Translate Circle J by $(x+a, y+b)$ and dilate by a factor of $\frac{t}{s}$
F) Translate Circle J by $(x+a, y+b)$ and dilate by a factor of $\frac{s}{t}$
G) Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{t}{s}$
H) Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{s}{t}$

Transformations

1) Reflect FOXY across line $\mathrm{y}=\mathrm{x}$.

2) Square SHAQ is shown. Point E is the midpoint of segment SH . Point F is the midpoint of segment $A Q$

Which transformation carries the Square onto itself?
A) A reflection across line segment $S A$
B) A reflection across line segment EF
C) A rotation of 180 degrees clockwise about the origin
D) A rotation of 180 degrees clockwise about the center of the square.

Hw Review 2
3) Square BERT is transformed to create the image $B^{\prime} E^{\prime} R^{\prime} T^{\prime}$, as shown.

Select all of the transformations that could have been performed.
A) A reflection across the line $y=x$
B) A reflection across the line $y=-2 x$
C) A rotation of 180 degrees clockwise about the origin
D) A reflection across the x-axis, and then a reflection across the y-axis.
E) A rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis.
4) 5 óse performs a transformation on a rhombers The resulting triangle is similar but not congruent to the original triangle. Which transformation did $\mathrm{Jö}^{\mathrm{se}}$ perform on the ${ }_{\text {rhambens }}$
A) Dilation
B) Reflection
C) Rotation
D) Translation
5) Triangle $A B C$ had vertices of $A(1,1), B(2.5,3)$ and $C(1,-3)$. It is dilated by a scale factor of 3 about the origin to create triangle $A^{\prime} B^{\prime} C^{\prime}$. What is the length, in units, of side $\overline{A^{\prime} C^{\prime}}$?
6) Complete the statement to explain how it can be shown that two circles are similar.

Circle M can be mapped onto circle N by a reflection
across \qquad and a dilation
about the center of circle M by a scale factor of

7) A translation is applied to $\triangle D O G$ to create $\triangle D^{\prime} O^{\prime} G^{\prime}$.

Let the statement $(x, y) \rightarrow(a, b)$ describe the translation. Create equations for a in terms of x and for b in terms of y that could be used to describe the translation.
$a=$ \qquad
$b=$ \qquad
8) Triangle HEN is shown.

Triangle $H^{\prime} E^{\prime} N^{\prime}$ is created by dilating triangle HEN by a scale factor of $\frac{1}{2}$. What is the length of $\overline{H^{\prime} \mathbf{N}^{\prime}}$?
9) A figure is fully contained in Quadrant 许The figure is transformed as shown.

- A reflection over the x-axis
- A reflection over the line $y=x$
- A 90° counterclockwise rotation about the origin.

In which quadrant does the resulting image lie?
A) Quadrant I
B) Quadrant II
C) Quadrant III
D) Quadrant IV
10) ParaldelgramPQRS is shown in the coordinate plane. Points M and N are midpoints of their respective sides.

Select all of the transformations that map the paralelegonto itself.
A) A 90° clockwise rotation around the center of the paralelegn
B) A 180° clockwise rotation around the center of the parablelegrar
C) A reflection across $\overline{P R}$
D) A reflection across $\overline{N M}$
E) A reflection across $\overline{Q S}$
11) Triangle $A B C$ is reflected across the x - $\alpha x / S$ to form triangle RST. Select all of the true statements.
A) $\overline{A B}=\overline{R S}$ (1 know this notation is wrong, but some moron used this wrong notation on the state test.)
B) $\overline{A B}=2 \cdot \overline{R S}$ (1 know this notation is wrong, but some moron used this wrong notation on the state test.)
C) $\triangle A B C \sim \triangle R S T$
D) $\triangle A B C \cong \triangle R S T$
E) $m \angle B A C=m \angle S R T$
F) $m \angle B A C=2 \cdot m \angle S R T$
12) Triangle BAL is reflected across the line $y=x$. Draw the resulting triangle.

14) The coordinate plane shows $\Delta F G H$ and $\Delta F^{\prime \prime} G^{\prime \prime} H^{\prime \prime}$

Which sequence of transformations can be used to show that $\Delta F G H \sim \Delta F^{\prime \prime} G^{\prime \prime} H^{\prime \prime}$?
A) A dilation about the origin with a scale factor of 2, followed by a 180° clockwise rotation about the origin.
B) A dilation about the origin with a scale factor of 2 , followed by a reflection over the line $y=x$
C) A translation 5 units up and 4 units left, followed by
a dilation with a scale factor of $1 / 2$ about point $\mathrm{F}^{\prime \prime}$.
D) A 180° clockwise rotation about the origin, followed by a dilation with a scale factor of $1 / 2$ about $\mathrm{F}^{\prime \prime}$
13) All corresponding sides and angles of $\triangle R S T$ and $\triangle D E F$ are congruent.
Select all of the statements that must be true.
A) There is a reflection that maps $\overline{R S}$ to $\overline{D E}$
B) There is a dilation that maps $\triangle R S T$ to $\triangle D E F$
C) There is a translation followed by a rotation that maps $\overline{R T}$ to $\overline{D F}$
D) There is a sequence of transformations that maps $\triangle R S T$ to $\triangle D E F$
E) There is not necessarily a sequence of rigid motions that maps $\triangle R S T$ to $\triangle D E F$
15) Two triangles are shown.

Which sequence of transformations could be performed on $\triangle E F G$ to show that it is similar to $\triangle J K L$?
A) Rotate $\triangle E F G 90^{\circ}$ clockwise about the origin, and then dilate it by a scale factor of $1 / 2$ with a center of dilation at point F^{\prime}
B) Rotate $\triangle E F G 180^{\circ}$ clockwise about point E , and then dilate it by a scale factor of 2 with a center of dilation at point E^{\prime}
C) Translate $\triangle E F G 1$ unit up, then reflect it across the x -axis, and then dilate it by a factor of $1 / 2$ with a center of dilation at point $\mathrm{E}^{\prime \prime}$
D) Reflect $\triangle E F G$ across the x-axis, then reflect it across the line $y=x$, and then dilate it by a scale factor of 2 with a center of dilation at point $\mathrm{F}^{\prime \prime}$

16) A triangle is shown on the coordinate grid. Draw the triangle after a transformation following the rule $(x, y) \rightarrow(x+5, y-2)$

17) Triangle $A B C$ is dilated with a scale factor of k and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.

What is the scale factor?
18) $\begin{gathered}\text { equilateral } \\ A_{n} \text { triagegle is rotated about its center. }\end{gathered}$

Select all of the angles of rotation that will map the equilateal triange onto itself.
A) 60 degrees
B) 120 degrees
C) 180 degrees
D) 240 degrees
E) 300degrees
F) 360 degrees
19) Circle R is located in the first quadrant with center ($\mathrm{x}_{\mathrm{y}}, \mathrm{y}_{1}$) and radius f. Felipe transforms Circle \& to prove that it is similar to any circle centered at the origin with radiuse.

Which sequence of transformations did Felipe use?
A) Translate Circleß by $\left(x+x_{1}, y+y_{i}\right)$ and dilate by a factor of $\frac{e}{6}$
B) Translate CircleR by $\left(x+\mathrm{x}_{1}, y+\mathrm{y}_{\mathrm{f}}\right)$ and dilate by a factor of $\frac{f}{e}$
C) Translate CircleR by ($x-x_{i}, y-y_{i}$) and dilate by a factor of ${ }_{f}^{e}$
D) Translate CircleR by ($x-\mathrm{x}_{\mathrm{i}}, y-\mathrm{y}_{\mathrm{i}}$) and dilate by a factor of $\frac{\stackrel{q}{e}}{}$

