Similarity - Parts of Similar Triangles

Notes Section 7.5
Name

Proportional Perimeter Theorem: If two triangles are similar, then the perimeters are proportional to the measures of corresponding sides.

If

$$
\text { , then } \frac{F O}{H E}=\frac{O X}{E N}=\frac{F X}{1+N}=\frac{P_{\triangle F O X}}{P_{\triangle H E N}}
$$

Proportional Altitudes Theorem: If two triangles are similar, then the measures of the corresponding altitudes are proportional to the measures of the corresponding sides.

If

$$
\text { , then } \frac{F O}{H E}=\frac{O X}{E N}=\frac{F X}{1+N}=\frac{O Y}{E Z}
$$

Proportional Angle Bisectors Theorem: If two triangles are similar, then the measures of the corresponding angle bisectors are proportional to the measures of the corresponding sides.

If

$$
\text { , then } \frac{F O}{H E}=\frac{O X}{E N}=\frac{F X}{1+N}=\frac{O Y}{E Z}
$$

Proportional Medians Theorem: If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.

$$
\text { , then } \frac{F O}{H E}=\frac{O X}{E N}=\frac{F X}{1+N}=\frac{O Y}{E Z}
$$

Angle Bisector Theorem: An angle bisector in a triangle separates the opposite side into segments that have the same ratio as the other two sides.

\#1) Find the value of x.

\#2) Find the value of x.

Similarity - Parts of Similar Triangles

Notes Section 7.5 \qquad
\#3) $\triangle A B C$ is similar to $\triangle X Y Z$. Segments $\overline{A K}$ and $\overline{Q X}$ are medians of the triangles.
$A K=4, B K=3, Y Z=x+2, Q X=2 x-5$. Find $Q Z$.

$$
\begin{aligned}
x(4) \frac{x+2}{6} & =\frac{2 x-5}{4} 6(x) \\
4 x+8 & =12 x-30 \\
8 & =8 x-30 \\
38 & =8 x \\
\frac{38}{8} & =x \\
\frac{19}{4} & =x
\end{aligned}
$$

$\triangle A B C$ is similar to $\triangle X Y Z$. Determine if each proportion is true or false.

\#4) $\frac{A B}{X Y}=\frac{A C}{X Z}$
\#5) $\frac{A K}{B C}=\frac{X Q}{Y Z}$
True
True
\#6) $\frac{B C}{Y Z}=\frac{X Y}{A B}$
\#7) $\frac{A B}{A K}=\frac{X Y}{X Q}$
False

