Similarity - Parallel Lines \& Proportional Parts

Notes Section 7.4 \qquad

Triangle Proportionality: A line, that intersects two sides of a triangle in two distinct points, is parallel to the third side IFF it separates these sides into segments of proportional lengths.

$$
\Leftrightarrow \quad \frac{w}{y}=\frac{x}{z}
$$

Midsegment: A segment in a triangle with endpoints that are the midpoints of two sides of the triangle.

Theorem 7-6: A midsegment is parallel to the third side of the triangle and its length is one-half the length of the third side.

$$
A B=\frac{1}{2} x y
$$

Corollary 7-1: If three or more parallel lines intersect two transversals, then they cut off the transversal proportionally.

Corollary 7-2: If three or more parallel lines cut off congruent segments on one transversal then they cut off congruent segments on every transversal.

$\# 1)$ Find the value of x.

12
\#2) Determine if $\overline{B D} / / \overline{A E} . \mathrm{CA}=15, \mathrm{AB}=3, \mathrm{CD}=8, \mathrm{CE}=10$

Similarity - Parallel Lines \& Proportional Parts

Notes Section 7.4
Name \qquad
\#3) Find the value of x.

$$
\begin{aligned}
(26)(26) \frac{2 x}{26} & =\frac{4+x}{26}(26)(36) \\
52 x & =144+36 x \\
16 x & =144 \\
x & =9
\end{aligned}
$$

\#4) Find the value of x.

14
\#5) Find the value of x and y.

\#6) Find the value of x.

$12 x=(x+4)(16-x)$
$12 x=16 x+64-4 x-x^{2}$
$12 x=-x^{2}+12 x+64$
$0=-x^{2}+64$
$x^{2}=64$
$x= \pm 8$
$x \neq-8$, so $x=8$

