\qquad

2018 Question 15

Square $A B C D$ has vertices at $A(1,2)$ and $B(3,-3)$. What is the slope of $\overline{B C}$?

$$
\begin{aligned}
& m_{\overline{A B}}=\frac{5}{-2} \\
& m_{\overline{B C}}=1 m_{\overline{B B}}=\frac{2}{5}
\end{aligned}
$$

2017 QUESTION 16

and Coplanar
Kevin asked Olivia what parallel lines are. Olivia responded, "They are lines that never intersect." What important piece of information is missing from Olivia's response?
a. The lines must be straight.
b. The lines must be coplanar.
c. The lines can be noncoplanar.
d. The lines form four right angles.

2018 Question 39

Part of a proof is shown. Place statements and reasons in the table to complete the proof.
Given: $m \| n$ and transversal p
Prove: $\angle 5 \cong \angle 4$

$\angle 8 \cong \angle 1$	Vertical angles theorem
$\angle 1 \cong \angle 4$	Corresponding angles postulate
$\angle 8 \cong \angle 4$	Transitive property
$\angle 5 \cong \angle 8$	Alternate exterior angles theorem
$\angle 5 \cong \angle 7$	Reflexive property
$\angle 4 \cong \angle 7$	Angle addition postulate

2017 Question 31

Which term is defined as two intersecting lines that form four right angles in a plane?
a. Skew lines
b. Straight lines
c. Parallel lines
d. Perpendicular lines

2018 Question 9

Line k has a slope of -5 . Line j is perpendicular to line k and passes through the point $(5,9)$. Create the equation for line j.

2019 Question 40

Part of a proof is shown. Place statements and reasons in the table to complete the proof.

Two parallel lines, a and b, are cut by a transversal c as shown. Prove that $\angle 1 \cong \angle 7$

Statements	Reasons			
1. $a \\| b$	Given			
2. $2 \leq \sim 3$	Verti	l ano	\approx	
3. $23=47$	Corresponding angles formed by parallel lines are congruent.			
4. $\angle 1 \cong \angle 7$	Transitive property			
$\angle 1 \cong \angle 3-\angle 1 \cong \angle 4$	$\angle 1 \cong \angle 5$	$\angle 3 \cong \angle 5$		
$\angle 3 \cong \angle 7 \quad \angle 4 \cong \angle 6$	$\angle 5 \cong \angle 7$	$\angle 6 \cong \angle 7$		

Transitive property Vertical angles are congruent.
Definition of supplementary angles.
Corresponding angles formed by parallel lines are congruent.

Alternate interior angles formed by parallel lines are congruent.

Alternate exterior angles formed by parallel lines are congruent.

2021 Question 22

A triangle JLM and line segment KN are given.

A proof of $\frac{J K}{J L}=\frac{J N}{J M}$ is shown.

Which statement must be added to the given to keep this proof valid?
A. $\overline{J L} \perp \overline{L M}$
B. $\overline{K N} \perp \overline{L M}$
C. $\overline{J L} \| \overline{L M}$
D. $\overline{K N} \| \overline{L M}$

2021 Question 37

A diagram is shown, where $k \| /$ and m is a transversal.

Move statements and reasons to the table to prove that $\angle 1 \cong<5$.

Transitive property Symmetric property
Vertical angles are congruent.
Straight angles form a linear pair.
Corresponding angles are congruent.
Alternate exterior angles are congruent.

