G.SRT.C. 8

Notes Section 9.4 the base of the building, the angle of elevation of the top of the hobo is 32° and the angle of elevation of the bottom of the hobo is 30°. Determine the height of the hobo (to the nearest foot).

$\tan (329)=\frac{z}{200}$
${ }^{(3)} \tan \left(30^{\circ}\right)=\frac{y}{200}$
$200 \tan \left(32^{\circ}\right)=z$
$200 \tan \left(30^{\circ}\right)=y$
$124.97 \approx z$

$$
115.47 \approx y
$$

(4) Man $+y=z$
$\mathrm{Man}+115.47=124.97$

$$
\operatorname{man}=9.5
$$

The hobo is about 9.5 feet tall.
\#2) In a rubber ducky floaty 400 feet from the base of the Cliffs of Insanity, George sees the base of the Starbucks at 18° and the top of the Starbucks at 21°. How tall is the Starbucks (to the nearest foot)?

$400 \tan \left(18^{\circ}\right)=y$ 129.97 by
(3) $\tan (2,1)=\frac{z}{400}$
$400 \tan \left(21^{\circ}\right)=z$ $153.55 x z$
(4) $\$ \Delta+y=z$
$+84+129.97=153.55$

$$
\$ \$=23.58
$$

The Starbucks is about 24 feet tall.

Trigonometry - Systems of Equations
G.SRT.C. 8
\#3) George and his paradoxasaur are on either side of a giant steamy pile of paradoxasaur poop and are 40 feet apart. George sees the top of the poop at 42° and his paradoxasaur sees the top of the poop at 36°. How high is the pile of poop (to the nearest foot)?

(3)

$$
\begin{aligned}
& \tan \left(42^{\circ}\right)=\frac{y}{40-x} \\
& \tan \left(42^{\circ}\right)=\frac{x \tan 30^{\circ}}{40-x}
\end{aligned}
$$

$(40-x) \tan \left(42^{\circ}\right)=x \tan \left(35^{6}\right)$
$40 \tan \left(42^{\circ}\right)-x \tan 42^{\circ}=x \tan \left(36^{\circ}\right)$

$$
40 \tan (4 i)=x \tan \left(36^{6}\right)+x \tan \left(42^{\circ}\right)
$$

$40 \tan \left(42^{\circ}\right)=x\left(\tan \left(36^{\circ}\right)+\tan \left(42^{\circ}\right)\right)$

(4)

$$
x \tan (36)^{6}=y
$$

$22.14 \tan \left(36^{\circ}\right) \approx y$

$$
16.09 \approx y
$$

The poop is about 16 feet tall.
\#4) On a sightseeing trip to the garbage dump, George spots a mound of Atari ET cartridges at 22° and Cathy spots the same mound at 30°. If the two nitwits are 310 feet apart, determine the height of the mound (to the nearest foot).

(2)
$\tan \left(22^{\circ}\right)=\frac{y}{x}$
(3) $\tan \left(30^{\circ}\right)=\frac{y}{310^{-} x}$
$x \tan \left(22^{\circ}\right)=y$

$$
\tan \left(30^{\circ}\right)=\frac{x \tan \left(2 i^{\circ}\right)}{310-x}
$$

$$
(310-x) \tan \left(30^{\circ}\right)=x \tan \left(22^{\circ}\right)
$$

$$
3 \operatorname{cotan}\left(30^{\circ}\right)-x \tan \left(30^{\circ}\right)=x \tan \left(22^{\circ}\right)
$$

$$
310 \tan \left(30^{\circ}\right)=x \tan \left(22^{\circ}\right)+x \tan \left(30^{\circ}\right)
$$

$$
310 \tan \left(30^{\circ}\right)=x\left(\tan \left(22^{\circ}\right)+\tan \left(30^{\circ}\right)\right)
$$

$$
\frac{310 \tan \left(30^{\circ}\right)}{\tan \left(22^{\circ}\right)+\tan \left(30^{\circ}\right)}=x
$$

$182.38 \approx x$

$$
x \tan \left(22^{\circ}\right)=y
$$

$182.36 \tan \left(22^{\circ}\right)=y$

$$
73.69 \approx y
$$

The mount is about 74 feet high.

