Right Triangles - Geometric Mean

Notes Section 8.3
Name \qquad

Geometric Mean: The geometric mean between two positive numbers, a and b, is the positive number x where $\frac{x}{a}=\frac{b}{x}$.

By multiplying both sides by the denominators, we can see that $x^{2}=a b$.

Example of why $x^{2}=a b$: Find geometric mean of 5 and 20

$$
\begin{aligned}
& \frac{x}{5}=\frac{20}{x} \\
& x^{2}=100 \\
& x= \pm \sqrt{100} \\
& x=10 \text { must bet }
\end{aligned}
$$

Find the geometric mean, x, for each of the following pairs of numbers.
\#1) 6 and 27

$$
\begin{aligned}
& x^{2}=6(27) \\
& x= \pm \sqrt{6(27)} \\
& x= \pm \sqrt{2 \cdot(3 \cdot 3)(3 \cdot 3)} \\
& x=3 \cdot 3 \sqrt{2} \\
& x=9 \sqrt{2}
\end{aligned}
$$

\#2) $\frac{3}{2}$ and $\frac{2}{3}$

$$
\begin{aligned}
& x^{2}=\frac{2}{2}\left(\frac{2}{3}\right) \\
& x= \pm \sqrt{1} \\
& x=1
\end{aligned}
$$

Theorem 8-1: If the altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the two triangles formed are similar to the given triangle and each other.

This theorem leads us to 3 specific geometric means.

Geometric Mean 1

$$
x^{2}=A D \cdot A C
$$

Geometric Mean 2

$$
z^{2}=D C \cdot A C
$$

Geometric Mean 3

$$
y^{2}=A D \cdot D C
$$

Right Triangles - Geometric Mean

Notes Section 8.3
Name \qquad

Find the values of x, y and z.

9	${ }^{4}$	$x^{2}=4.13$
$z^{2}=9.13$	$y^{2}=4.9$	$x^{2}=117$
$z^{2}=\sqrt{117}$	$y^{2}=36$	$x^{2}=52$
$y=6$	$x=\sqrt{50}$	

\#5)

$z^{2}=12(14.08)$		
$z^{2}=168.96$		
$z=\sqrt{168.96}$	$5^{2}=x(12)$	$y^{2}=2.08(14.08)$
$25=12 x$	$y^{2}=29.29$	
	$y=\sqrt{29.2}$	

\#6) The find the height of the tree in his backyard, KK Slider held the corner of a book near his eye so that the top and bottom of the tree were in line with two edges of the book. If KK's eye is 5 feet off the ground and he is standing 14 feet from the tree, how tall is the tree?

$$
\begin{aligned}
& 14^{2}=(y-5) 5 \\
& 196=5 y-25 \\
& 171=5 y \\
& \frac{171}{5}=y \\
& 34.2=y
\end{aligned}
$$

The tree is 34.2 feet tall.

