Right Triangles - Pythagorean Theorem

Notes Section 8.2
Name \qquad

Pythagorean Theorem: In a right triangle, the sum of the squares of the measures of the legs is equals the square of the measure of the hypotenuse.

x and y are always the legs and r is always the hypotenuse.

$$
\begin{gathered}
5-12-13 \\
9-40-41
\end{gathered}
$$

Pythagorean Triple: Three whole numbers that satisfy the Pythagorean Theorem. The smallest Pythagorean Triple is the 3-4-5 triangle.

the $3-4-5$ triangle.	$8-15-17$	
$3-4-5$ $7-24-25$	$12-35-37$	
$6-8-10$	$20-21-29$	
$9-12-15$		

Use the Pythagorean Theorem to find the missing measure. Give exact answers and rounded answers (if needed) to one decimal place.
\#1) x
(u)

$$
y=8
$$

$$
x^{2}+y^{2}=r^{2}
$$

\#2)

$$
\begin{aligned}
(4)^{2}+(8)^{2} & =r^{2} \\
16+36 & =r^{2} \\
52 & =r^{2} \\
\pm \sqrt{52} & =r \\
\sqrt{4 \cdot 13} & =r \\
2 \sqrt{13} & =r \\
7.2 & \approx r
\end{aligned}
$$

\#3)

$$
\begin{aligned}
x^{2}+r^{2} & =r^{2} \\
(11)^{2}+(\sqrt{10})^{2} & =r^{2} \\
121+c 0 & =r^{2} \\
131 & =r^{2} \\
\pm \sqrt{131} & =r \\
\sqrt{131} & =r \\
11.4 & \approx r
\end{aligned}
$$

The converse to the Pythagorean Theorem: If the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

Determine if the following measures can form a right triangle.
\#4)

$$
\begin{gathered}
\text { 3,4,5 Pythagoven Triple } \\
\text { Yes, }
\end{gathered}
$$

\#5)
12, 20, 16
$x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
(12)^{2}+(16)^{2} & =(20)^{2} \\
144+256 & =400 \\
400 & =40
\end{aligned}
$$

$$
\text { Yes } \infty
$$

\#6) $39,34,18$

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
&(18)^{2}+(34)^{2}=(39)^{2} \\
& 324+1156=1521 \\
& 1480 \neq 1521 \\
& \text { Not }
\end{aligned}
$$

\#7) $3.87,4.47,5.91$

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(3.87)^{2}+(4.47)^{2}=(5.91)^{2} \\
14.9769+19.9809=34.9281 \\
34.9578 \neq 34.9281 \\
\text { Not a }
\end{gathered}
$$

Right Triangles - Pythagorean Theorem
Notes Section 8.2
Name
\#8) In a right triangle, the measures of the legs are 8 and $x+$ 7 , and the measure of the hypotenuse is $x+10$. Find the value of x.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(8)^{2}+(x+7)^{2} & =(x+10)^{2} \\
64+x^{2}+14 x+49 & =x^{2}+20 x+100 \\
x^{2}+14 x+113 & =x^{2}+20 x+100 \\
-6 x+113 & =100 \\
-6 x & =-13 \\
x & =\frac{13}{6}
\end{aligned}
$$

\#9) The diagonals of a rhombus measure 30 cm and 16 cm .
Use the properties of a rhombus and the Pythagorean Theorem to find the perimeter of the rhombus.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(8)^{2}+(15)^{2} & =r^{2} \\
64+225 & =r^{2} \\
289 & =r^{2} \\
\pm 17 & =r
\end{aligned}
$$

Perimeter $=4 r$

$$
=4(17)
$$

Perimeter $=68$

