Use the Pythagorean Theorem to find the missing measure. Give exact answers and rounded answers (if needed) to one
decimal place.
\#1)

\#3)

\#4)

x
$x^{2}+y^{2}=r^{2}$
$(4)^{2}+y^{2}=(5)^{2}$
$16+y^{2}=25$

$$
y^{2}=9
$$

$$
y= \pm 3
$$

$$
y=3
$$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(12)^{2}+y^{2} & =(15)^{2} \\
144+y^{2} & =225 \\
y^{2} & =81 \\
y & = \pm 9 \\
y & =9
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+(5)^{2} & =(13)^{2} \\
x^{2}+25 & =169 \\
x^{2} & =144 \\
x & = \pm 12 \\
x & =12
\end{aligned}
$$

$$
x^{2}+y^{2}=r^{2}
$$

$$
\begin{aligned}
& x^{2}+(15)^{2}=(17)^{2} \\
& x^{2}+225=289
\end{aligned}
$$

$$
x^{2}=64
$$

$$
x= \pm 8
$$

$$
x=8
$$

\#5)

3

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+(3)^{2} & =(3 \sqrt{2})^{2} \\
x^{2}+9 & =9 \cdot 2 \\
x^{2}+9 & =18 \\
x^{2} & =9 \\
x & = \pm 3 \\
x & =3
\end{aligned}
$$

\#6)

8

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(8)^{2}+(8)^{2} & =r^{2} \\
64+64 & =r^{2} \\
128 & =r^{2} \\
\pm \sqrt{128} & =r \\
\sqrt{2.64} & =r \\
8 \sqrt{2} & =r \\
r & \approx 11.3
\end{aligned}
$$

\#7)

$$
\begin{aligned}
& 1 \\
& x^{2}+y^{2}=r^{2} \\
& (1)^{2}+(1)^{2}=r^{2} \\
& 1+1=r^{2} \\
& \partial=r^{2} \\
& \pm \sqrt{2}=r \\
& \sqrt{2}=r \\
& 1.4 \approx r
\end{aligned}
$$

\#8)

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+(5 \sqrt{2})^{2}=(10)^{2} \\
& x^{2}+25 \cdot 2=100 \\
& x^{2}+50=100 \\
& x^{2}=50 \\
& x= \pm \sqrt{50} \\
& x=\sqrt{25 \cdot 2} \\
& x=5 \sqrt{2}
\end{aligned}
$$

$$
x \approx 7.1
$$

Right Triangles - Pythagorean Theorem
Homework Section 8.2
\#9)

\#10)

$$
x^{2}+y^{2}=r^{2}
$$

\#11)

\#12)

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(10 \sqrt{3})^{2}+(10)^{2} & =r^{2} \\
100 \cdot 3+100 & =r^{2} \\
300+100 & =r^{2} \\
400 & =r^{2} \\
\pm 20 & =r \\
20 & =r
\end{aligned}
$$

Determine if the following measures can form a right triangle.
\#13) $18,24,30$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(18)^{2}+(24)^{2} & =(30)^{2} \\
324+576 & =900 \\
900 & =900
\end{aligned}
$$

Yes, this forms a right triangle.
\#14)
21,29, $20 \quad x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
(20)^{2}+(21)^{2} & =(29)^{2} \\
400+441 & =841 \\
841 & =841
\end{aligned}
$$

Yes, this forms a right triangle.
\#15)
$6,8,10$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(6)^{2}+(8)^{2} & =(10)^{2} \\
36+6 y & =100 \\
100 & =100
\end{aligned}
$$

Yes, this forms a right triangle.
\#16)

$$
1,2,3
$$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(1)^{2}+(2)^{2} & =(3)^{2} \\
1+4 & =9 \\
5 & \neq 9
\end{aligned}
$$

NO, this does not form a right triangle.

You must draw a picture for each of following problems, then answer the questions.
\#17) Draw a right triangle with vertices $A(0, a), C(0,0)$, and B $(b, 0)$ on a coordinate plane. Use the Pythagorean Theorem to derive a formula for the distance between A and B.

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& b^{2}+a^{2}=(A B)^{2} \\
& \pm \sqrt{b^{2}+a^{2}}=A B
\end{aligned}
$$

$$
A B=\sqrt{b^{2}+a^{2}}
$$

\#18) Herbert is making a ramp to try out his car for the Gnaden derby. The ramp support forms a right angle. The base is 12 feet long and the height is 5 feet. What length of plywood does he need to complete the ramp?

The plywood is 13 feet long.
\#19) The diagonal of a rhombus is 48 cm long, and a side of the rhombus is 26 cm long. Find the length of the other diagonal.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+(24)^{2} & =(26)^{2} \\
x^{2}+576 & =676 \\
x^{2} & =100 \\
x & = \pm 10 \\
x & =10
\end{aligned}
$$

The other diagonal is 20 cm long.

Right Triangles - Pythagorean Theorem
Homework Section 8.2
Name
\#20) The diagonals of a rhombus measure 10 cm and 8 cm .
Use the properties of a rhombus and the Pythagorean Theorem to find the perimeter of the rhombus.

$$
\begin{aligned}
& P=4 r \\
& P=4(\sqrt{a l})
\end{aligned}
$$

The perimeter is $4 \sqrt{41} \mathrm{~cm}$.
\#21) In a right triangle, the measures of the legs are 12 and x +12 , and the measure of the hypotenuse is $x+16$. Find the value of x.

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
&(12)^{2}+(x+12)^{2}=(x+16)^{2} \\
& 144+x^{2}+24 x+144=x^{2}+32 x+256 \\
& x^{2}+24 x+288=x^{2}+32 x+256 \\
& 288=8 x+256 \\
& 32=8 x \\
& 4=x
\end{aligned}
$$

\#22) A stair stringer is a board that supports stairs. Suppose a set of stairs is to rise 8 feet over a length of 15 feet. Find the length of the stair stringer to the nearest foot.

The stringer is 17 feet cong.

