Right Triangles - Simplifying Radicals

Notes Section 8.1 \qquad

Review of Simplifying

- Make a factor bush
- Find perfect squares (or pairs) and square root them to move to outside of radical
- Multiply all inside numbers together and multiply all numbers outside radical together.

Simplify.

1. $\sqrt{18}=\sqrt{9} \sqrt{2}$

$$
=3 \sqrt{2}
$$

2. $\sqrt{28}=\sqrt{4 \cdot 7}$

$$
=2 \sqrt{7}
$$

3. $3 \sqrt{27}=3 \cdot \sqrt{9} \sqrt{3}$

$$
\begin{aligned}
& =3 \cdot 3 \cdot \sqrt{3} \\
& =9 \sqrt{3}
\end{aligned}
$$

4. $\sqrt{108}=\sqrt{9} \sqrt{12}$

$$
\begin{aligned}
& =3 \cdot \sqrt{4} \sqrt{3} \\
& =3 \cdot 2 \cdot \sqrt{3} \\
& =6 \sqrt{3}
\end{aligned}
$$

5. $\sqrt{5^{2}}=5$

$$
\sqrt{s^{2}}=\sqrt{25}=5
$$

6. $\sqrt{x^{5}}=\sqrt{x^{2}} \sqrt{x^{2}} \sqrt{x}$

$$
=x \cdot x \cdot \sqrt{x}
$$

$=x^{2} \sqrt{x}$

Review of Multiplying

- First simplify each separate radical if needed
- Then multiply all numbers inside the radical together and all numbers outside the radical together
- Finally simplify again if needed

Multiply. Simplify your answer.
7. $\sqrt{3} \cdot \sqrt{3}=\sqrt{9}$

$$
=3
$$

8. $-(\sqrt{3})^{2}=-\sqrt{9}$

$$
=-3
$$

9. $(-\sqrt{3})^{2}=(-\sqrt{3})(-\sqrt{3})$

$$
\begin{aligned}
& =+\sqrt{9} \\
& =3
\end{aligned}
$$

10. $\sqrt{3^{2}}=3$
11. $\sqrt{3} \cdot \sqrt{2}=\sqrt{6}$
12. $\sqrt{10} \cdot \sqrt{2}=\sqrt{20}$

$$
\begin{aligned}
& =\sqrt{4} \sqrt{5} \\
& =2 \sqrt{5}
\end{aligned}
$$

Right Triangles - Simplifying Radicals

Notes Section 8.1 \qquad

Review of Division

- First if possible divide the radicands together and the numbers outside the radical together.
- Then, simplify each separate radical if needed
- Finally, if needed simplify again.

13. $\frac{\sqrt{27}}{\sqrt{3}}=\sqrt{9}$

$$
=3
$$

14. $\frac{\sqrt{48}}{\sqrt{6}}=\sqrt{8}$

$$
=\sqrt{4} \sqrt{2}
$$

$$
=2 \sqrt{2}
$$

15. $\frac{8 \sqrt{15}}{5 \sqrt{3}}=\frac{8 \sqrt{5}}{5}$
16. $\frac{11 \sqrt{55}}{\sqrt{11}}=11 \sqrt{5}$

Rationalize The Denominator
You rationalize when there is a radical in the denominator of the fraction that does not simplify out on its own (like yesterday's division problems).

- First try to simplify with division
- Is there still a radical in the denominator? If so, multiply by 1 in its "clever form of 1 ". This means to create a fraction that is equivalent to one using that radical.

17. $\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
18. $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
19. $\frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{24}}{3}$

$$
\begin{aligned}
& =\frac{\sqrt{4} \sqrt{6}}{3} \\
& =\frac{2 \sqrt{6}}{3}
\end{aligned}
$$

20. $\frac{\sqrt{11}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{22}}{2}$
