Quadrilaterals - Squares and Rhomb

Notes Section 6.5
Name \qquad

Rhombus:
A quadrilateral with four congruent sides. (Also could be defined as a parallelogram with four congruent sides.)

Theorem 6-13.14:

A quadrilateral is a rhombus IFF its diagonals are perpendicular.

Theorem 6-15:
Each diagonal of a rhombus bisects a pair of opposite angles.

Square:
(a rectangular rhombus; a rhombicular rectangle.) A quadrilateral that is both a rhombus and a rectangle.

R
A

Name all the quadrilaterals - parallelogram, rectangle, rhombus, or square - that have each property.
\#1) The opposite sides are parallel.
All
\#2) The opposite sides are congruent.

\#3) All sides are congruent.
Rhombus Square
\#4) It is equiangular and equilateral.
Square

Use rhombus BEAC with $B A=10$ to determine whether each statement is true or false. Justify your answer.
\#5) $C E=10$

\#6) $\overline{C E} \perp \overline{A B}$

True, the dieguals of a rhombus are perpendicular.

Quadrilaterals - Squares and Rhombi
Notes Section 6.5
Name \qquad

Use rhombus IJKL and the given information to solve each problem.
\#7) If $m \angle 3=4(x+1)$ and $m \angle 5=2(x+1)$, find x.

$$
\begin{aligned}
(2 x+2)+(4 x+4)+90 & =180 \\
6 x+96 & =180 \\
6 x & =84 \\
x & =14
\end{aligned}
$$

Determine whether EFGH is a parallelogram, rectangle, rhombus, or square. List all that apply.
\#8) $E(6,5), F(2,3), G(-2,5), H(2,7)$

To determine if a quad is a parallelogram.
The diagonals must have the same midpoint.

To determine if a quad is a rectangle.
The midpoints of the diagonals must be the same and the diagonals must have the same length.

To determine if a quad is a rhombus.
The midpoints of the diagonals must be the same and the diagonals must be perpendicular

To determine if a quad is a square.
The quad must be a rectangle and a rhombus.
parallelogram' $M_{\overline{G E}}=M_{\overline{F H}}$

$$
\begin{aligned}
M_{\overline{G E}} & =\left(\frac{\sum x}{2}, \frac{\sum y}{2}\right) & M_{\overline{F H}} & =\left(\frac{\sum x}{2}, \frac{\sum y}{2}\right) \\
& =\left(\frac{(-2)+(6)}{2}, \frac{(5)+(5)}{2}\right) & & =\left(\frac{(2)+(2)}{2}, \frac{(7)+(3)}{2}\right) \\
& =\left(\frac{4}{2}, \frac{10}{2}\right) & & =\left(\frac{4}{2}, \frac{10}{2}\right) \\
M_{\overline{G E}} & =(2,5) & M_{\overline{F H}} & =(2,5)
\end{aligned}
$$

Rectancex $G E=F H$

$$
\begin{aligned}
G E & =\sqrt{[\Delta x]^{2}+[\Delta v]^{2}} \\
& =\sqrt{[(-2)-(6)]^{2}+[(5)-(5)]^{2}} \\
& =\sqrt{[-8]^{2}+[0]^{2}} \\
& =\sqrt{64+0} \\
& =\sqrt{64} \\
G E & =8
\end{aligned}
$$

$$
F H=\sqrt{[\Delta x]^{2}+[\Delta y]^{2}}
$$

$$
=\sqrt{[(2)-(2)]^{2}+[(x)-(3)]^{2}}
$$

$$
=\sqrt{[0]^{2}+[4]^{2}}
$$

$$
=\sqrt{0+16}
$$

$$
=\sqrt{16}
$$

$F H=4$
Rhombus $\overline{G E} \perp \overline{F H}$

$$
\begin{aligned}
& m_{\overline{G E}}=\frac{\Delta y}{\Delta x} \\
&=\frac{(5)-(5)}{(-2)-(6)} \\
&=\frac{0}{-8} \\
& m_{\overline{G E}}=0 \\
& \text { Horizontal }
\end{aligned}
$$

$$
\begin{aligned}
& m_{\overline{F H}}= \frac{\Delta y}{\Delta x} \\
&= \frac{(7)-(3)}{(2)-(3)} \\
&= \frac{-4}{0} \\
& m_{\overline{F A}}= \text { undefined } \\
& \text { vertical Geometry } \\
& \text { Page } 2 \text { of } 2
\end{aligned}
$$

