Solve each system of equations by substitution. If the system does not have exactly one solution, state whether it has no solution or infinitely many solutions.
\#1)

$$
45 y+(7)=12
$$

$$
s_{y}=5
$$

$$
y=1
$$

\#2)

$$
\text { 2) } \begin{aligned}
& y=9 \\
& 2 x-4 y=-40 \\
& 2 x-4(9)=-40 \\
& 2 x-36=-40 \\
& 2 x=-4 \\
& x=-2 \\
&(-2,9)
\end{aligned}
$$

\#3)

$$
\left\{\begin{array}{r}
y=3 x-2 \\
3 x-y=7 \\
3 x-(3 x-2)
\end{array}\right) 7
$$

NO Solution or of the other the the true

Notes Section 6.1

If possible you may want to transform one or both of your equations. Such as getting rid of fractions decimals.
\#1) In one equations, solve for a variable.
\#2) Then substitute for the variable into the equation.
\#3) Solve equation.
\#4) Then substitute the value of the variable into one of equations and solve.

If at any point while solving an equation you get a statement such as, $9=$ 9 , then the answer is infinitely many solutions. If at any point you get a false statement, such as $3=$ 7, then the answer is no solution.

$$
\text { \#4) } \begin{aligned}
& \begin{array}{r}
y=-2 x+5 \\
2 y+2 x
\end{array} \\
& 2(-2 x+5)+2 x=0 \\
&-4 x+10+2 x=0 \\
&-2 x+10=0 \\
& 10=2 x \\
& 5=x
\end{aligned}
$$

Name \qquad

$$
y=-2(5)+5
$$

$$
\begin{aligned}
& y=-10+5 \\
& y=-5
\end{aligned}
$$

$$
(5,-5)
$$

$$
(7,3)
$$

$$
\begin{aligned}
& \text { \#6) } 100 . \begin{array}{l}
x+2 y=-2 \\
.75 x+15 y=2.55
\end{array} \\
& {[75 x+15 y}=255 \\
& 75(-2 y-2)+15 y=255 \\
& 150 y-150+15 y=255 \\
&-135 y+150=405 \\
&-135 y=405 \\
& y=-3
\end{aligned}
$$

Quadrilaterals - Solving by Substitution

