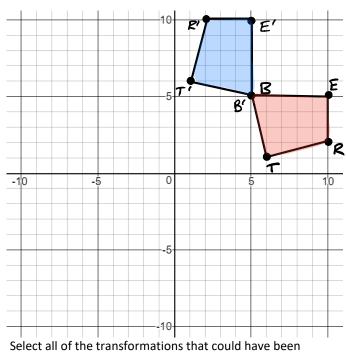

Name

### Geometry HW Review 2

1) Reflect FOXY across line y = x.



2) Secure SHAQ is shown. Point E is the midpoint of segment SH. Point F is the midpoint of segment AQ




Which transformation carries the **Square** onto itself? A) A reflection across line segment SA

- B A reflection across line segment EF
- C) A rotation of 180 degrees clockwise about the origin A rotation of 180 degrees clockwise about the center of

the Square.

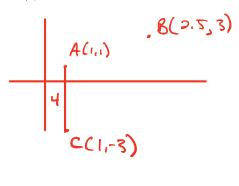
3) Square BERT is transformed to create the image B'E'R'T', as shown.

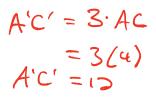


performed.

- $\overrightarrow{A}$  A reflection across the line y = x
- B) A reflection across the line y = -2x
- C) A rotation of 180 degrees clockwise about the origin
- D) A reflection across the x-axis, and then a reflection across the y-axis.

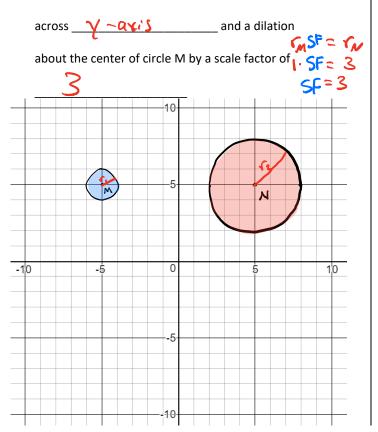
E) A rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis.

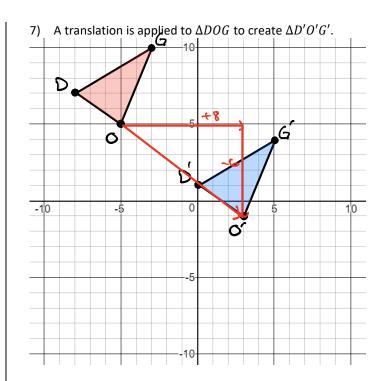

4) SSC performs a transformation on a chombers The resulting triangle is similar but not congruent to the original triangle. Which transformation did SSC perform on the chombers?


A) Dilation

- B) Reflection
- C) Rotation
- D) Translation

Geometry HW Review 2


5) Triangle ABC had vertices of A(1, 1), B(2.5, 3) and C(1, -3). It is dilated by a scale factor of 3 about the origin to create triangle A'B'C'. What is the length, in units, of side  $\overline{A'C'}$ ?



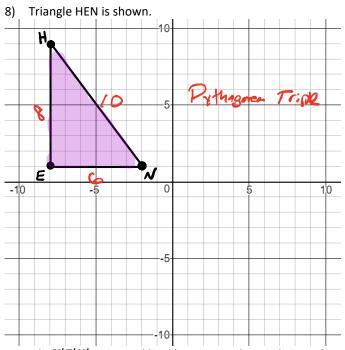



6) Complete the statement to explain how it can be shown that two circles are similar.

Circle M can be mapped onto circle N by a reflection






Let the statement  $(x, y) \rightarrow (a, b)$  describe the translation. Create equations for *a* in terms of *x* and for *b* in terms of *y* that could be used to describe the translation.

X+8 a = Ŷ b =

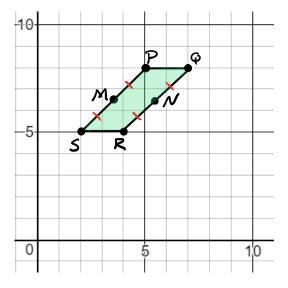
Name\_\_\_\_\_

Name\_\_\_\_\_

#### Geometry HW Review 2



Triangle H'E'N' is created by dilating triangle HEN by a scale factor of  $\frac{1}{2}$ . What is the length of  $\overline{H'N'}$ ?


 $H'N' = SF \cdot HN$  H'N' = 5 HN H'N' = 5 (10)H'N' = 5

- 9) A figure is fully contained in Quadrant The figure is transformed as shown.
  - A reflection over the x-axis  $\mathbf{B}$
  - A reflection over the line  $y = x R^{1/2}$
  - A 90° counterclockwise rotation about the origin.

In which quadrant does the resulting image lie?



10) Parelled gramPQRS is shown in the coordinate plane. Points M and N are midpoints of their respective sides.

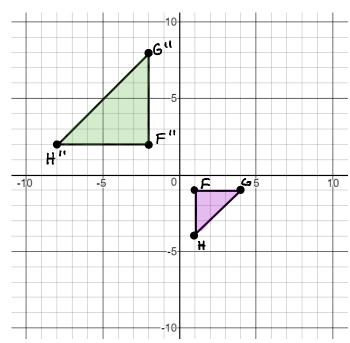


Select all of the transformations that map the parallelogue onto itself.

- A) A 90° clockwise rotation around the center of the
  - B) A 180° clockwise rotation around the center of the partilelage
- C) A reflection across  $\overline{PR}$
- $\vdash$  D) A reflection across  $\overline{NM}$
- E) A reflection across  $\overline{QS}$

- Triangle ABC is reflected across the <sup>⊥</sup> x ¬ α x i S to form triangle RST. Select all of the true statements.
  - (A)  $\overline{AB} = \overline{RS}$  ( | know this notation is wrong, but some moron used this wrong notation on the state test.)  $\overline{AB} = 2 \cdot \overline{RS}$  ( | know this notation is wrong, but some moron used this wrong notation on the state test.)  $\Delta ABC \sim \Delta RST$ (D)  $\Delta ABC \approx \Delta RST$ (E)  $m \angle BAC = m \angle SRT$ (E)  $m \angle BAC = 2 \cdot m \angle SRT$

Name\_\_\_\_\_


- 12) Triangle BAL is reflected across the line y = x. Draw the resulting triangle.

13) All corresponding sides and angles of  $\Delta RST$  and  $\Delta DEF$  are congruent.

Select all of the statements that must be true.

- A) There is a reflection that maps  $\overline{RS}$  to  $\overline{DE} \nearrow \mathbb{A}$
- B) There is a dilation that maps  $\Delta RST$  to  $\Delta DEF$  News
- There is a translation followed by a rotation that $maps <math>\overline{RT}$  to  $\overline{DF}$   $\mathcal{Alimays}$
- D) There is a sequence of transformations that maps  $\Delta RST$  to  $\Delta DEF$
- E) There is not necessarily a sequence of rigid motions that maps  $\Delta RST$  to  $\Delta DEF$  Maybe

14) The coordinate plane shows  $\Delta FGH$  and  $\Delta F''G''H''$ 



Which sequence of transformations can be used to show that  $\Delta FGH \sim \Delta F"G"H"$ ?

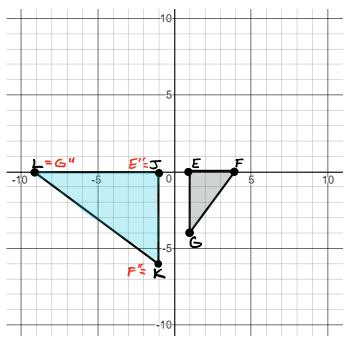
A dilation about the origin with a scale factor of 2, followed by a 180° clockwise rotation about the origin.

B) A dilation about the origin with a scale factor of 2, followed by a reflection over the line y = x

- C) A translation 5 units up and 4 units left, followed by a dilation with a scale factor of ½ about point F"
- D) A  $180^{\circ}$  clockwise rotation about the origin, followed by a dilation with a scale factor of  $\frac{1}{2}$  about F"

# Scale Factor= 2

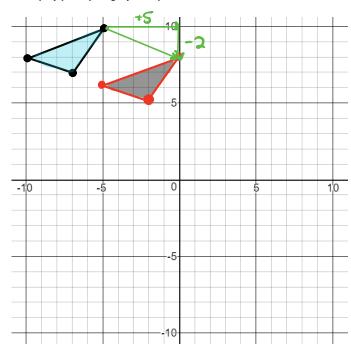
Name


## Geometry HW Review 2

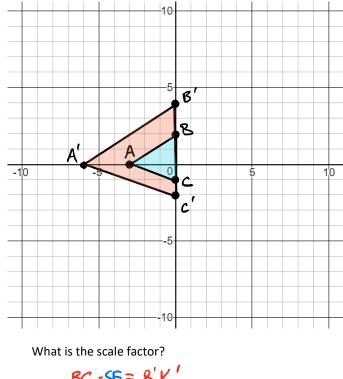


Which sequence of transformations could be performed on  $\Delta EFG$  to show that it is similar to  $\Delta /KL$ ?

- A) Rotate  $\Delta EFG$  90° clockwise about the origin, and then dilate it by a scale factor of  $\frac{1}{2}$  with a center of dilation at point F'
- Kotate  $\Delta EFG~180^\circ$  clockwise about point E, and then dilate it by a scale factor of 2 with a center of dilation at point E'
- C) Translate  $\Delta EFG$  1 unit up, then reflect it across the x-axis, and then dilate it-by a factor of 1/2 with a center of dilation at point E"


Reflect  $\Delta EFG$  across the x-axis, then reflect it across the line y = x, and then dilate it by a scale factor of 2 with a center of dilation at point F"




EF SF = JK  $(3)_{SF} = 6$ SF=

Orientation is same so it can't be a single reflection.

16) A triangle is shown on the coordinate grid. Draw the triangle after a transformation following the rule  $(x, y) \rightarrow (x + s, y - 2)$ 



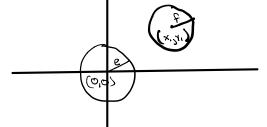
17) Triangle ABC is dilated with a scale factor of k and a center of dilation at the origin to obtain triangle A'B'C'.



BC-5F= 8'K' (3)5=6 SF=2

Geometry

# HW Review 2 covilatoral


18) And triangle is rotated about its center.

Select all of the angles of rotation that will map the equilation that wil

- A) Co degrees
  B) IO degrees
  C) ISO degrees
  C) ISO degrees
  C) ISO degrees
  E) 300 degrees
  F) 300 degrees
- Order of Robotion = 3 Angle of Robotion = 3400 = 1200 So, 120°, 240°, 360°
- 19) Circle **R** is located in the first quadrant with center  $(x_i, y_i)$ and radius f. Felipe transforms Circle **R** to prove that it is
  - similar to any circle centered at the origin with radius  ${\pmb e}_{\perp}$

Which sequence of transformations did Felipe use?

- A) Translate Circle  $\mathcal{R}$  by  $(x + x_t, y + y_t)$  and dilate by a factor of  $\frac{\mathcal{R}}{\mathcal{R}}$
- B) Translate Circle  $\mathcal{K}$  by  $(x + \mathbf{x}_t, y + \mathbf{y}_t)$  and dilate by a factor of  $\frac{1}{2}$
- Translate Circle  $\mathbf{R}$  by  $(x \mathbf{x}_i, y \mathbf{y}_i)$  and dilate by a factor of  $\mathbf{\xi}$
- D) Translate Circle R by  $(x x_i, y y_i)$  and dilate by a factor of  $\frac{1}{2}$



$$Translak <-x_{1},-y_{1} > = (x-x_{1},y-y_{1})$$
  
Scale factor  $f \cdot sf = e$   
 $sf = \frac{e}{f}$ 

Name\_\_\_\_\_