1) Reflect FOXY across line $y=x$.

2) Parallelogram SHAQ is shown. Point E is the midpoint of segment SH. Point F is the midpoint of segment AQ

Which transformation carries the parallelogram onto itself?
A) A reflection across line segment SA? Fal 8
B) A reflection across line segment EF? False
C) A rotation of 180 degrees clockwise about the origin Fa_{a} \&
D) A rotation of 180 degrees clockwise about the center of the parallelogram. True
3) Square BERT is transformed to create the image $B^{\prime} E^{\prime} R^{\prime} T^{\prime}$, as shown.

Select all of the transformations that could have been performed.
A) A reflection across the line $y=x \quad F$
B) A reflection across the line $y=-2 x \quad F$
C) A rotation of 180 degrees clockwise about the origin T
D) A reflection across the x-axis, and then a reflection across the y-axis.
E) A rotation of 270 degrees counterclockwise about the origin, and then a reflection across the x-axis. F
4) Smelly Kid performs a transformation on a triangle. The resulting triangle is similar but not congruent to the original triangle. Which transformation did Smelly Kid perform on the triangle?

A) Dilation

B) Reflection
C) Rotation
D) Translation
\qquad
5) Triangle $A B C$ had vertices of $A(1,1), B(2.5,3)$ and $C(0,-3)$. It is dilated by a scale factor of $1 / 2$ about the origin to create triangle $A^{\prime} B^{\prime} C^{\prime}$. What is the length, in units, of side

$$
\begin{aligned}
x^{2}+y^{2} & =(B C)^{2} \\
(2.5)^{2}+(6)^{2} & =(B C)^{2} \\
6.25+36 & =(B C)^{2} \\
42.25 & =(B C)^{2}
\end{aligned}
$$

$$
6.5=B C
$$

6) Complete the statement to explain how it can be shown that two circles are similar.

Circle M can be mapped onto circle N by a reflection across x-axis \qquad and a dilation

$$
r_{M} \cdot s F=r_{N}
$$ about the center of circle M by a scale factor of $(2) S F=3$

7) A translation is applied to $\triangle D O G$ to create $\triangle D^{\prime} O^{\prime} G^{\prime}$.

Let the statement $(x, y) \rightarrow(a, b)$ describe the translation. Create equations for a in terms of x and for b in terms of y that could be used to describe the translation.

$$
a=\frac{x-4}{b=-3}
$$

\qquad
8) Triangle HEN is shown.

Triangle $H^{\prime} E^{\prime} N^{\prime}$ is created by dilating triangle HEN by a scale factor of 4 . What is the length of $\overline{H^{\prime} E^{\prime}}$?

$$
\begin{aligned}
H^{\prime} E^{\prime} & =S F \cdot H E \\
H^{\prime} E^{\prime} & =4 H E \\
& =4(5) \\
H^{\prime} E^{\prime} & =20
\end{aligned}
$$

9) A figure is fully contained in Quadrant II. The figure is transformed as shown.

- A reflection over the x-axis A^{\prime}
- A reflection over the line $y=x \quad A^{\text {II }}$
- A 90° counterclockwise rotation about the origin.

In which quadrant does the resulting image lie?
A) Quadrant I
B) Quadrant II
C) Quadrant III

10) Rhombus PQRS is shown in the coordinate plane. Points M and N are midpoints of their respective sides.

Select all of the transformations that map the rhombus onto itself.
A) A 90° clockwise rotation around the center of the rhombus val \&
B) A 180° clockwise rotation around the center of the rhombus T
(C) A reflection across $\overline{P R}$ T
D) A reflection across $\overline{N M} \mathrm{~F}$
(E) A reflection across $\overline{Q S} T$
11) Triangle $A B C$ is reflected across the line $y=2 x$ to form triangle RST. Select all of the true statements.
A) $\overline{A B}=\overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
B) $\overline{A B}=2 \cdot \overline{R S}$ (I know this notation is wrong, but some moron used this wrong notation on the state test.)
C) $\triangle A B C \sim \triangle R S T$
(D) $\triangle A B C \cong \triangle R S T$
(E) $m \angle B A C=m \angle S R T$
F) $m \angle B A C=2 \cdot m \angle S R T$

$$
\triangle A B C \cong \triangle R S T
$$

\qquad
12) Triangle BAL is reflected across the line $y=x$. Draw the resulting triangle.

13) All corresponding sides and angles of $\triangle R S T$ and $\triangle D E F$ are congruent.
Select all of the statements that must be true.
A) There is a reflection that maps $\overline{R S}$ to $\overline{D E}$ Maybe
B) There is a dilation that maps $\triangle R S T$ to $\triangle D E F$ Never
C) There is a translation followed by a rotation that
maps $\overline{R T}$ to $\overline{D F}$ Always
D) There is a sequence of transformations that maps $\triangle R S T$ to $\triangle D E F$ Always
E) There is not necessarily a sequence of rigid motions that maps $\triangle R S T$ to $\triangle D E F$ Maybe
14) The coordinate plane shows $\Delta F G H$ and $\Delta F " G " H "$

(MAGE is Larger so SF >1
Which sequence of transformations can be used to show that $\Delta F G H \sim \Delta F " G " H$ "?

多
A dilation about the origin with a scale factor of 2, followed by a 180° clockwise rotation about the origin.
B) A dilation about the origin with a scale factor of 2 . followed by a reflection over the line $y=x$
A A translation 5 units up and 4 units left, followed by a dilation with a scale factorsfl2 about point F "
20 A 180° clockwise rotation about the origin, followed by a dilation with a scale far ion $1 / 2$ about $F^{\prime \prime}$
$S F=2$
Orientation is different so it must be a reflection
\qquad
15) Two triangles are shown.

Which sequence of transformations could be performed on $\triangle E F G$ to show that it is similar to $\triangle J K L$?
A) Rotate $\triangle E F G 90^{\circ}$ clockwise about the origin, and then dilate it by a scale factor of $1 / 2$ with a center of dilation at point F^{\prime}
B) Rotate $\triangle E F G 180^{\circ}$ clockwise about point E , and then dilate it by a scale factor of 22 with a center of dilation at point E^{\prime}
C) Translate $\triangle E F G 1$ unit up, then reflect it across the x-axis, and then dilate it by a factor of $1 / 2$ with a center of dilation at point $\mathrm{E}^{\prime \prime}$
D) Reflect $\triangle E F G$ across the x-axis, then reflect it across the line $y=x$, and then dilate it by a scale factor of 2 with a center of dilation at point $F^{\prime \prime}$

$S F=\frac{1}{2}$
Orientation is different, so reflection
16) A triangle is shown on the coordinate grid. Draw the triangle after a transformation following the rule $(x, y) \rightarrow(x-4, y+3)$

17) Triangle $A B C$ is dilated with a scale factor of k and a center of dilation at the origin to obtain triangle $A^{\prime} B^{\prime} C^{\prime}$.

What is the scale factor? $A B \cdot S F=A^{\prime} B^{\prime}$
(4) $S F=10$
$S F=\frac{10}{4}$
$S F=5 / 2$
\qquad
18) A square is rotated about its center.

Select all of the angles of rotation that will map the square onto itself.
A) 45 degrees
B) 60 degrees
(C) 90 degrees
D) 120 degrees
Order of rotation $=4$
(E) 180 degrees
(F) 270 degrees

$$
\text { angle of rotation }=\frac{360^{\circ}}{4}=90^{\circ}
$$

$$
\text { So, } 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}
$$

19) Circle J is located in the first quadrant with center (a, b) and radius s. Felipe transforms Circle J to prove that it is similar to any circle centered at the origin with radius t.

Which sequence of transformations did Felipe use?
A) Translate Circle J by $(x+a, y+b)$ and dilate by a factor of $\frac{t}{s}$
B) Translate Circle J by $(x+a, y+b)$ and dilate by a factor of $\frac{s}{t}$
C) Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{t}{s}$
D) Translate Circle J by $(x-a, y-b)$ and dilate by a factor of $\frac{s}{t}$

Translate $\langle-a,-b\rangle=(x-a, y-b)$
Scale factor

$$
\begin{aligned}
& S \cdot S F=t \\
& S F=\frac{t}{S}
\end{aligned}
$$

