\qquad

Chapter 1 - Tools For Geometry

1.1

Undefined terms in geometry: point, line, and plane
Point indicates a location. It has no dimension, is represented by a dot.

Line is represented by a straight path that extends indefinitely in two directions and has no thickness or width. A line contains infinite many points.

Plane is represented by a flat surface that extends without end in two dimensions and has not thickness. A plane contains infinite many points.
collinear points - points that lie on the same line.

Coplanar - coplanar points are points that lie in the same plane.

Space - space is the set of all points

Segment - Two points and all the points between them.
Ray-a segment that is extended indefinitely in one direction

Opposite rays - two collinear rays that extend in opposite directions

Postulate - a conditional statement that is accepted as being true.

Postulate 1-1 - Through any two points is exactly one line.
Postulate 1-2 - If two lines intersect, then their intersection is exactly one point.

Postulate 1-3 - If two planes intersect, then their intersection is a line.

Postulate 1-4 - Through any three noncollinear points there is exactly one plane.

Terms, Postulates and Theorems
Congruent Segments $-\overline{O X} \cong \overline{1.2} \cong \overline{E N}$ iff $O X=E N$
Definition of Midpoint - If M is the midpoint of $\overline{P Q}$, then M is the point between P and Q such that $P M=M Q$.

Segment Bisector - any segment, line, or plane that intersects a segment at its midpoint.

Midpoint in the Coordinate Plane - The coordinates of the midpoint of a line segment whose endpoints have coordinates ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)

$$
M=\left(\frac{\Sigma \mathrm{x}}{2}, \frac{\Sigma y}{2}\right)
$$

Distance formula - The distance, d, between any points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the following formula:

$$
d=\sqrt{[\Delta x]^{2}+[\Delta y]^{2}}
$$

1.3

Ray: a segment that is extended indefinitely in one direction

Vertex: the endpoint of a ray
Angle: a figure that consists of two rays with a common endpoint

Sides: the two rays of an angle
Measure of an angle: the number of degrees in an angle
Opposite rays: two collinear rays that extend in opposite directions

Straight angle: the figure formed by two opposite rays

Acute Angle: an angle whose measure is less than 90 and greater than zero.

Obtuse Angle: an angle whose measure is greater than 90 and less than 180.

Right Angle: an angle whose measure is 90.

Congruent Angles $-\angle C A T \cong \angle D O G$ iff $m \angle C A T=$ $m \angle D O G$

Angle Bisector: a line, ray, or segment that separates an angle into two congruent angles.

1.4

Segment - A segment consists of two endpoints and all the points between them.

Segment Addition Postulate - A is between C and T iff $C A+A T=C T$.

Angle Addition Postulate $-R$ is in the interior of $\angle P Q S$ iff $m \angle P Q R+m \angle R Q S=m \angle P Q S$.

Postulate - A statement that assumed to be true.

Theorem - A statement that can be proved true using established facts.

Adjacent Angles - two angles that have the same vertex, share common ray, and have no common interior points.

Complementary Angles - two angles that sum to 90°.

Complement Theorem - If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary.

Supplementary Angles - two angles that sum to 180°.
Linear Pair - two adjacent angles whose non-common sides form opposite rays (form a straight angle).

Supplement Theorem - If two angles form a linear pair, then they are supplementary.

Vertical Angles - two nonadjacent angles formed by intersecting lines.

Vertical Angles Theorem: Vertical angles are congruent.

