Inscribed Angle (ON)

Theorem: If a tangent and a secant (or chord) intersect at a point on a circle, then the measure of each angle formed is one half the measure of its intercepted arc.

$$
\begin{aligned}
& m \angle 1=\frac{1}{2} m B R D \\
& m \angle 2=\frac{1}{2} \widehat{B D}
\end{aligned}
$$

\#1) Find $m \angle 1$.

$$
\begin{aligned}
& m \angle 1=\frac{1}{2}\left(112^{\circ}\right) \\
& m \angle 1=56^{\circ}
\end{aligned}
$$

\qquad

Interior Angle (IN)

Theorem: If two secants (or chords) intersect in the interior of a circle, then the measure of each angle formed is one half the sum of the measure of arcs intercepted by the angle and its vertical angle.

$m \angle A E B=\frac{1}{2}(m \widehat{A B}+m \overparen{C D})$
\#2) Find x.

$$
\begin{aligned}
& x=\frac{1}{2}\left(55^{\circ}+107^{\circ}\right) \\
& x=\frac{1}{2}\left(162^{\circ}\right) \\
& x=81^{\circ}
\end{aligned}
$$

Exterior Angle (OUT)

Theorem: If any combination of secants and tangents intersect in the exterior of a circle, then the measure of each the angle formed is one half the difference of the measure of arcs intercepted arcs.

$$
m \angle C E D=\frac{1}{2}(m \widehat{A B}-m \widehat{C D})
$$

\#3) Find x.

$x=\frac{1}{2}\left(93^{\circ}-29^{\circ}\right)$
$x=\frac{1}{2}(64)$
$x=32^{\circ}$

Circles - Internal, External and Tangent Angles
G.C.A. 2
\#4) Find x and $m \angle 1$.

\#5) Find x.

\#6) Find x.

$$
\begin{aligned}
59 & =\frac{1}{2}(168-x) \\
118 & =168-x \\
-50 & =-x \\
50 & =x
\end{aligned}
$$

\#7) Find x and y.

\#8) Find x.

$$
\begin{aligned}
x+114 & =180 \\
x & =66
\end{aligned}
$$

\#9) Find x.

$$
\begin{gathered}
y+183+93=360 \\
y+276=360 \\
y=84 \\
x=\frac{1}{2}\left(183^{\circ}-84^{\circ}\right) \\
x=\frac{1}{2}(99) \\
x=49.5^{\circ}
\end{gathered}
$$

