Circles - Inscribed Angles

G.C.A. 2 \qquad

Inscribed Angle: an angle with vertex on the circle and whose sides are chords.

Theorem: An inscribed angle is half its intercepted arc.

Theorem: An inscribed angle whose intercepted arc is a semicircle is 90°.

Theorem: Inscribed angles on the same intercepted arc are congruent.

Cyclic Quadrilateral: A quadrilateral that is inscribed in a circle.

Cyclic Quadrilateral Theorem: Opposite angles in a cyclic quadrilateral are supplementary.

G.C.A. 2
\#1) Find $m \angle 1$ and $m \hat{2}$

\#2) Find $m \angle 1$ and $m \angle 2$

\#3) Find $m \angle 2$ and $m \hat{1}$

\#4)
Quadrilateral ABCD is inscribed in circle $\mathrm{O}_{\text {, }}$ as shown

What is the value of y ?
\#5)

$$
\begin{aligned}
& 10 x+y+100=180^{\circ} \\
& y+10 x=80 \\
& \text { (4) } \begin{array}{rl}
y & y=80-10 x \\
y & =80-10(8)
\end{array} \\
& y=80-80 \\
& y=0 \\
& \text { (2) } 2 y+94+9 x+14=180^{\circ} \\
& 9 x+2 y+108=180 \\
& \begin{array}{c}
9 x+2 y=72 \\
\text { (3) } 9 x+2(80-10 x)=72^{\circ} \\
9 x+160-20 x=72^{\circ}
\end{array} \\
& \begin{array}{l}
9 x+160-20 x=72 \\
-11 x+140=72^{\circ}
\end{array} \\
& -11 x=-88 \\
& x=8
\end{aligned}
$$

\#5)
A teacher draws circle $O, \angle R P Q$ and $\angle R O Q$, as shown

The teacher asks students to select the correct claim about the relationship between $m \angle R P Q$ and $m \angle R O Q$. - Claim 1: The measure of $\angle R P Q$ is equal to the measure of $\angle R O Q$. Fall\&

- Claim 2: The measure of $\angle R O Q$ is twice the measure of $\angle R P Q$.

Which claim is correct? Justify your answer.
Clam 2 is correct because an inscribed angle, $\angle R P Q$, is half its intercepted arc and a central angl, $2 R O Q$, is equal to its interspted are

