Circles - Central Angles

G.C.A. 2

ArC: an unbroken part of a circle.

- Minor Arc: an arc that measures less than 180.
- Major Arc: an arc that measures more than 180.
- Semicircle: an arc that measures 180.

$\frac{\text { Minor Arc }}{M G, \pi H}$

Name each of the following from the picture.

Arc Length (Distance) \& Arc Angle (Angle Measure)

Name
Adjacent Arcs: arcs of a circle that have exactly one point in common.
$\overparen{I I}$ and $\overparen{G I}$ are adjacent

Arc Measure: the measure of a arc is the measure of its central angle. The measure of a semicircle is 180 .

$$
m \angle A B C=m \widehat{A C}=40^{\circ}
$$

Arc Addition Postulate: The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.
$m G M+m \overparen{M H}=m G M H$

Theorem 12.1: In the same (or in congruent) circle, two arcs are congruent IFF their corresponding central angles are congruent.
$\angle J C H \cong \angle G C K$ if $\overparen{J H} \cong \overparen{G K}$

Central angle of a regular polygon.

$$
m \angle C=\frac{360}{n}
$$

where n is the number of sides and $\angle C$ is the central angle.

Geometry
G.C.A. 2

Complete each equation.

$$
\begin{aligned}
m \widehat{C E} & =\widehat{C D}+\widehat{D E} \quad m \widehat{E F}=93^{\prime} \\
& =53+34^{\circ} \\
& =87^{\circ}
\end{aligned}
$$

$$
m \widehat{E C K}=207^{\circ}
$$

$$
m \widehat{D F C}=360^{\circ}-53^{\circ}
$$

$$
=307^{\circ}
$$

$$
\begin{array}{ll}
m \widehat{A C}=39^{\circ} & m \widehat{A E}=141^{\circ} \\
m \widehat{E K}=71^{\circ} & m \angle K B D=3 a^{\circ}
\end{array}
$$

Name \qquad
Notes Section 12.3
Given a regular polygon, complete each equation.

$$
m \angle A T B=60^{\circ} \quad m \angle D T B=120^{\circ}
$$

$$
m \widehat{A C}=120 \quad m \widehat{E C A}=2 \% 0
$$

$$
m \angle A E B=30 \quad \text { If } A B=5 \mathrm{~cm}, \text { what does } T B=S
$$

If $A B=5 \mathrm{~cm}$, what does $E A=5 \sqrt{3}$

Geometry
Page 2 of $\mathbf{2}$

