Circles - Central Angles

G.C.A. 2

Hw Section 12.3
Name
\#1) Determine the arc measure.
$m \widehat{D F}=l 6 l^{\circ}$
$\mathrm{m} \widehat{E C A}=196^{\circ}$
$m \widehat{A F}=44^{\circ}$
$\mathrm{m} \widehat{C F D}=260^{\circ}$

\#2) Determine the arc measure. $m \widehat{A C}=34^{\circ}$
$m \widehat{D A G}=\frac{183^{\circ}}{25^{\circ}}$
$m \widehat{A D}=\frac{214^{\circ}}{m \widehat{D A F}=}$

\#3) Determine the arc measure.

$$
m \widehat{A E}=144^{\circ}
$$

$m \widehat{A B}=\underline{7^{\circ}}$
$m \widehat{C D B}=324^{\circ}$
$m \widehat{B D}=123^{\circ}$

\#4) Determine the arc measure.
$m \widehat{L J}=\underline{S^{\circ}}$
$m \widehat{K J}=165^{\circ}$
$m \widehat{G J K}=\frac{280^{\circ}}{320^{\circ}}$
$m \widehat{K L I}=32$

\#5) Fill in the of the missing arcs on the circle.
$m \widehat{A C}=117^{\circ}, m \widehat{B E}=111^{\circ}, m \widehat{B A}=91^{\circ}$

\#6) Fill in the of the missing arcs on the circle.

\#7) From the given diagram, determine whether the arcs are Major, Minor or Semi-Circle. To describe the arc without giving it way through notation we will refer to clockwise and counterclockwise (counter cw).

\#8) The teacher asks a student to write the name for the arc from A to B on the board. Jackie comes up writes $\widehat{A B}$ or $\widehat{B A}$. Jeff raises his hand and says that he has a different answer.
What might his answer be if it is different than Jackie's?

He might say A DB which
is a major arc

$\mathrm{m} \angle \mathrm{DBH}=38^{\circ} \quad m \widehat{D C E}=299^{\circ}$ $m \widehat{H G}=81^{\circ} \quad m \widehat{H C F}=240^{\circ}$ $\mathrm{m} \angle \mathrm{HBA}=142^{\circ} \quad \mathrm{m} \angle \mathrm{DBA}=180^{\circ}$
\#10) Given concentric circles with $m \widehat{G F}=76^{\circ}, m \angle H I E=$ 147°, and $\overline{C A}$ and $\overline{F H}$ are diameters.

$$
\begin{array}{ll}
m \widehat{C B}=\frac{104^{\circ}}{256^{\circ}} & m \widehat{H E}=147^{\circ} \\
m \widehat{B D C}=\frac{\mathrm{m}}{} \mathrm{CLIB}=104^{\circ}
\end{array}
$$

\#11) Given concentric circles with $m \widehat{B C}=31^{\circ}, m \angle F K J=$ 68°, and $\overline{E B}$ is a diameter.

$m \overparen{E D}=68^{\circ}$
$\mathrm{m} \angle \mathrm{GKH}=$ \qquad
$m \widehat{A B C}=143^{\circ}$

$$
\mathrm{m} \angle \mathrm{AKB}=112^{\circ}
$$

\#12) Given a regular octagon. Answer each question.

$m \angle A P B=4 \not 5^{\circ}$

$$
\mathrm{m} \angle \mathrm{HPF}=90^{\circ}
$$

$$
m \widehat{A G E}=180^{\circ}
$$

$$
m \widehat{G E A}=270^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{GPF}=45^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{PAH}=67.5
$$

$$
\mathrm{m} \angle \mathrm{PGE}=415^{\circ}
$$

$$
\text { If } \mathrm{HD}=12 \mathrm{~cm} \text {, then } \mathrm{GE}=\sqrt{6} \sqrt{2} \quad 45^{\circ}-45^{\circ}-90^{\circ}
$$

\#13) Points A, B, C, D, and E are placed on circle R in this order such that there are five congruent arcs.
What is the $m \widehat{B C E}=$?

