

20 A

 $|\Pi|$

#8) The teacher asks a student to write the name for the arc from A to B on the board. Jackie comes up writes \widehat{AB} or \widehat{BA} . Jeff raises his hand and says that he has a different answer. What might his answer be if it is different than Jackie's?

Geometry Page 1 of 2

Circles – Central Angles Hw Section 12.3

Name

G.C.A.2

#11) Given concentric circles with $m\widehat{BC} = 31^\circ, m \angle FKI =$ 68°, and \overline{EB} is a diameter.

#12) Given a regular octagon. Answer each question.

#10) Given concentric circles with $m\widehat{GF} = 76^{\circ}, m \angle HIE =$ 147°, and \overline{CA} and \overline{FH} are diameters.

	$mLAPB = \frac{360}{n}$ $= \frac{360}{8}$ $= 45$
m∠APB = <u>45°</u>	m∠HPF = ♀♡⁰
$m\widehat{AGE} = 180^{\circ}$	mGEA =
m∠GPF = <mark>45°</mark>	m∠PAH = 67.5
m∠PGE = <u> </u>	
If HD = 12 cm, then GE = $$	<u>2</u> 45'-45'-90

#13) Points A, B, C, D, and E are placed on circle R in this order such that there are five congruent arcs. What is the $m\widehat{BCE} = ?$ 2.0

$$mLBC = \frac{360}{5} = 72^{\circ}$$

$$mBCE = 75^{\circ}(3)$$

$$mBCE = 2(16^{\circ})$$