Use the law of sines or the law of cosines to answer each question. Round each angle to the nearest degree and each side to nearest tenth.
\#1) In triangle $\mathrm{ABC}, \mathrm{a}=12, \mathrm{~m} \angle \mathrm{~B}=70^{\circ}, \mathrm{m} \angle \mathrm{C}=15^{\circ}$. Find b .

$$
\begin{aligned}
m \angle A+70^{\circ}+15^{\circ} & =180^{\circ} \\
m \angle A+85^{\circ} & =180^{\circ} \\
\text { ILA } & =95^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \left(95^{\circ}\right)}{12} & =\frac{\sin \left(70^{\circ}\right)}{b} \\
b \sin \left(95^{\circ}\right) & =12 \sin \left(70^{\circ}\right) \\
b & =\frac{12 \sin \left(70^{\circ}\right)}{\sin \left(95^{\circ}\right)} \\
b & \approx 11.3
\end{aligned}
$$

\#2) In triangle $A B C, a=12, b=5, m \angle A=110^{\circ}$. Find $m \angle C$.

$$
\begin{aligned}
& \frac{\sin \left(110^{\circ}\right)}{12}=\frac{\sin (m \angle B)}{5} \\
& \frac{5 \sin \left(110^{\circ}\right)}{12}=\sin (m \angle B) \\
& \sin ^{-1}\left(\frac{5 \sin \left(110^{\circ}\right)}{12}\right)=m \angle B \\
& 23^{\circ} \approx m \angle B \\
& m \angle C+23^{\circ}+110^{\circ}=180^{\circ} \\
& m \angle C+133^{\circ}=180 \\
& m \angle C=470^{\circ}
\end{aligned}
$$

\#3) In triangle $A B C, a=7, b=12, c=15$. Find $m \angle C$.

\#4) In triangle $A B C, m \angle A=43^{\circ}, b=23, c=26$. Find a.

$$
a^{2}=b^{2}+c^{2}-2 b c \cdot \cos (m \angle A)
$$

$$
a^{2}=(23)^{2}+(26)^{2}-2(23)(26) \cos \left(43^{\circ}\right)
$$

$$
a^{2}=529+676-1196 \cos \left(43^{\circ}\right)
$$

$$
a^{2}=1205-1196 \cos \left(43^{\circ}\right)
$$

$$
a= \pm \sqrt{1205-1196 \cos \left(43^{\circ}\right)}
$$

$$
a \approx 18.2
$$

More Trig

\#5) Two of George's fleas leave George's body at the same time. Both fleas, Hoppy and Springs, travel at a speed of 2 feet per hour. Hoppy hops in the direction of 80° east of north while Springs springs 30° east of south. How far apart are the two fleas after 5 hours?

\#6) Strandy, one of George's arm pits hairs, decides to detach himself from the pit and make a run for it. While squirming across George's chest, Strand is 7 inches from George's left armpit and 13 inches from his right armpit. The angle formed by the two armpits and Strand is 100°. How many inches apart are George's armpits?

$$
\begin{aligned}
& \angle P \frac{S}{S^{2}=l^{2}+r^{2}-2 l r \cos (m \angle S)} \\
& S^{2}=(13)^{2}+(7)^{2}-2(13)(7) \cos \left(100^{\circ}\right) \\
& S^{2}=169+49-182 \cos \left(100^{\circ}\right) \\
& S^{2}=218-182 \cos \left(100^{\circ}\right) \\
& S= \pm \sqrt{218-182 \cos \left(100^{\circ}\right)} \\
& S=15.8
\end{aligned}
$$

George's armpits are 15.8 inches a part.

Answers
\#1) $\mathrm{b} \approx 11.3$
\#2) $\mathrm{m} \angle \mathrm{C} \approx 47^{\circ}$
\#3) $\mathrm{m} \angle \mathrm{C} \approx 101^{\circ}$
\#4) $\mathrm{a} \approx 18.2$

