Law of Sines: Let $\triangle A B C$ be any triangle with a, b, and c representing the measures of sides opposite angles with measures A, B, and C respectively. Then,

The Law of Sines can be used to solve a triangle in the following cases:

1. You are given the measure of two angles and any side of a triangle.
2. You are given the measure of two sides and an angle opposite one of these sides of the triangle.

Solving the Triangle: Finding the measures of all the angles and sides of a triangle.
\qquad Ambiguous case of Sines

For the following examples, round the sides to the nearest tenth and the angles to the nearest whole number.
\#1) Solve $\triangle A B C$ if $m \angle A=50^{\circ}, m \angle B=67^{\circ}$, and $b=10$.

$$
\begin{array}{r}
m \angle C+67^{\circ}+50^{\circ}=180^{\circ} \\
m \angle C+117^{\circ}=180^{\circ} \\
m \angle C=63^{\circ}
\end{array}
$$

$$
\begin{gathered}
\frac{\sin \left(67^{\circ}\right)}{10}=\frac{\sin \left(50^{\circ}\right)}{a} \\
a \cdot \sin \left(67^{\circ}\right)=10 \sin \left(50^{\circ}\right) \\
a=\frac{10 \sin \left(50^{\circ}\right)}{\sin \left(67^{\circ}\right)} \\
a \approx 8.3
\end{gathered}
$$

\#2) If $a=10, m \angle C=124^{\circ}$, and $c=25$, find $m \angle A$.

$$
\begin{gathered}
\frac{\sin \left(124^{\circ}\right)}{25}=\frac{\sin (m \angle A)}{10} \\
\frac{10 \sin \left(124^{\circ}\right)}{25}=\sin (m \angle A) \\
\sin ^{-1}\left(\frac{10 \sin \left(124^{\circ}\right)}{25}\right)=m \angle A \\
19^{\circ} \approx m \angle A
\end{gathered}
$$

\#3) Two of George's paradoxasaurs, Bert and Ernie, fly away from George at the same time. Both paradoxasaurs travel at a speed of 50 miles per hour. Bert flies in the direction of 50° west of north while Ernie travels 10° west of south. How far apart are Bert and Ernie after 4 hours?

(5)

$$
\begin{aligned}
\frac{\sin \left(30^{\circ}\right)}{200} & =\frac{\sin \left(120^{\circ}\right)}{9} \\
9 \sin \left(30^{\circ}\right) & =200 \sin \left(120^{\circ}\right) \\
g & =\frac{200 \sin \left(120^{\circ}\right)}{\sin \left(30^{\circ}\right)} \\
9 & \approx 346
\end{aligned}
$$

Bert and Ernie are about 346 miles apart.

