

1. Solve the following problems.
a) A tree casts a shadow 21 m long. The angle of elevation of the sun is 55°. What is the height of the tree?

$$
\begin{aligned}
& \operatorname{Tan} 55^{\circ}=\frac{x}{21} \\
& x=\left(\tan 55^{\circ}\right)(21)
\end{aligned}
$$

b) A helicopter is hovering over a landing pad 100 m from where you are standing. The helicopter's angle of elevation with the ground is 15°. What is the altitude of the helicopter?

$$
\begin{aligned}
& \operatorname{Tan} 15^{\circ}=\frac{x}{100} \\
& x=\left(\tan 15^{\circ}\right)(100)
\end{aligned}
$$

$$
x=26.79 \mathrm{~m}
$$

THE ALTITUDe OF THE

c) You are flying a kite and have let out 30 ft of string but it got caught in a 8 ft tree. What is the angle of elevation to the location of the kite?

$$
\begin{aligned}
& \sin \theta=\frac{8}{30} \\
& \sin ^{-1}(8 / 30)=\theta \\
& \theta=15.47^{\circ}
\end{aligned}
$$

THE ANGLE OF ELEVATION is 15.47°.

d) A 15 m pole is leaning against a wall. The foot of the pole is 10 m from the wall. Find the angle that the pole makes with the ground.

$$
\begin{gathered}
\cos \theta=\frac{10}{15} \\
\cos ^{-1}(10 / 15)=\theta \\
\begin{array}{c}
\theta=48.19^{\circ} \\
\text { THE ANGLE THE POLE MAKES } \\
4 \text { THE THE GROUND IS } \\
\text { TH. }
\end{array}
\end{gathered}
$$

e) A guy wire reaches from the top of a 120 m television transmitter tower to the ground. The wire makes a 68° angle with the ground. Find

$$
\begin{aligned}
& \text { the length of the guy wire. } \\
& \frac{\sin 68}{1}=\frac{120}{x} \\
& (\sin 68) x=120 \\
& \text { f) An airplane climbs at an angle of } 16^{\circ} \text { with the ground. Find the ground } \\
& \text { distance the plane travels as it moves } \mathbf{2 5 0 0} \mathrm{m} \text { through the air. } \\
& \cos 16^{\circ}=\frac{x}{2500} \\
& x=2403.15 \mathrm{~m} \\
& \text { THE HCRIZONAL DISTANcE? } \\
& x=(\cos 16)(2500)
\end{aligned}
$$

g) A lighthouse operator sights a sailboat at an angle of depression of 12°. If the sailboat is 80 m away, how tall is the lighthouse?

$$
\begin{gathered}
\text { TAN } 12^{\circ}=\frac{x}{80} \\
x=\left({\text { TAN } 12^{\circ}}^{\circ}\right)(80) \\
\text { Solve the following problems. }
\end{gathered}
$$

2. a) How long is the guy wire?

$$
\begin{gathered}
3^{2}+4^{2}=x^{2} \\
9+16=x^{2} \\
25=x^{2} \\
5=x \\
\text { WIRE } 155 \mathrm{Ft}
\end{gathered}
$$

3.a) What is the length of the line of sight from the man to the helicopter?

b) What is the angle formed between the guy wire and the ground?

$$
\begin{aligned}
& \operatorname{Tan} \theta=\frac{4}{3} \\
& \operatorname{TAN}^{-1}(-1 / 3)^{\circ}=0 \\
& \theta=53.1^{\circ} \\
& \text { THE ANNE IS } 53.1^{\circ}
\end{aligned}
$$

b) What is the angle of elevation from the man to the helicopter?
$\operatorname{Tan} \theta=\frac{75}{100}$

$$
\operatorname{Tan}^{-1}(75 / 100)=0
$$

$$
\theta=36.87
$$

LINE OF SIGHT 15125 m
and a diagonal of 13 m . What is the width?

$$
\begin{aligned}
& 12^{2}+w^{2}=13^{2} \\
& 144+w^{2}=169 \\
& w^{2}=25 \\
& w=5=5 \\
& w 10 T M \text { is } 5 m
\end{aligned}
$$

b) What is the angle formed between the diagonal and the width of the field?
$\sin \theta=12 / 13$
$\sin ^{-1}(12 / 13)=\theta$
$\theta=67.38^{\circ}$
AnGle FuCTIED is 67.38°

12 m
5.a) A $\mathbf{5} \mathbf{f t} 11$ inch women casts 3 ft shadow. What is the angle that the sun's rays make with the ground?

$$
\begin{aligned}
& \operatorname{Tan} \theta=71 / 36 \\
& \operatorname{TaN}^{-1}(71 / 36)=0
\end{aligned}
$$

6. a) A ramp is 18 m long. If the horizontal distance of the ramp is 17 m , what is the vertical distance?

$$
\begin{gathered}
x^{2}+17^{2}=18^{2} \\
x^{2}+289=324 \\
x^{2}=35
\end{gathered}
$$

b) What is the angle of elevation of the ramp?

$$
\cos \theta=\frac{17}{18}
$$

36 in

$$
\cos ^{-1}(17 / 18)=\theta
$$

17 m
$\theta=19.19^{\circ}$
ANGLE OF ELEVATION
1519.19°
7. a) Using the drawbridge diagram, determine the distance from one side to the other. (exact answer)

DRAWBRIDGE WIDTH IS $80 \sqrt{2} F$.
b) Now that you know the distance from side to side, determine how high the drawbridge would be if the angle of elevation was 60°.(exact answer)

c) How far apart would the drawbridge be if the angle of elevation of the drawbridge was 20° ?

$$
\begin{aligned}
& \cos 20=\frac{x}{40 \sqrt{2}} \\
& x=(\cos 20)(40 \sqrt{2}) \\
& x=53.18 \mathrm{ft}
\end{aligned}
$$

$$
\text { TOTAL WIDTH - } 2\binom{\text { HORIZONTAL }}{\text { PISTAREL }}=\text { GAP }
$$

$$
80 \sqrt{2}-2(53.18)=G A P
$$

$$
6.82 \mathrm{Ft}=G A P
$$

THE DRAWBRIDEE is 6.82 ft aport at that point in time.

